分析 (1)利用ρ2=x2+y2=4可得⊙C的標(biāo)準(zhǔn)方程4,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)),消去t可得直線l的普通方程.
(2)直線l的標(biāo)準(zhǔn)參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),代入⊙C的方程可得:t2+(2+$\sqrt{3}$)t+1=0,利用根與系數(shù)的關(guān)系及其參數(shù)的意義可得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=-$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$.
解答 解:(1)由ρ=4可得⊙C的標(biāo)準(zhǔn)方程:x2+y2=4,
直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)),消去t可得:直線l的普通方程:$x-\sqrt{3}y$+2$\sqrt{3}$-1=0.
(2)直線l的標(biāo)準(zhǔn)參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),代入⊙C的方程可得:t2+(2+$\sqrt{3}$)t+1=0,
∴t1+t2=-(2+$\sqrt{3}$),t1t2=1.
∴$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=-$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$=$2+\sqrt{3}$.
點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、直線與圓的位置關(guān)系、直線參數(shù)方程的應(yīng)用,考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | g(x)的最大值為2 | B. | g(x)在[0,$\frac{π}{2}$]上是增函數(shù) | ||
C. | 函數(shù)g(x)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱 | D. | 函數(shù)g(x)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com