利用數(shù)學(xué)歸納法證明“對(duì)于任意正奇數(shù)n、an-bn能被a-b整除”時(shí),其第二步論證應(yīng)該是()


  1. A.
    假設(shè)n=k時(shí)命題成立,再證n=k+1時(shí)命題也成立
  2. B.
    假設(shè)n=k時(shí)命題成立,再證n=k+2時(shí)命題也成立
  3. C.
    假設(shè)n=2k+1時(shí)(kÎN)命題成立,再證n=2k+3時(shí)命題成立
  4. D.
    假設(shè)n=2k-1時(shí)(kÎN)命題成立,再證n=2k+1時(shí)命題成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=
an-2
2an-3
,n∈N*,a1=
1
2

(Ⅰ)計(jì)算a2,a3,a4;(Ⅱ)猜想數(shù)列的通項(xiàng)an,并利用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
1
2
(n>1,n?N*)的過(guò)程中,用n=k+1時(shí)左邊的代數(shù)式減去n=k時(shí)左邊的代數(shù)式的結(jié)果為(  )
A、
1
2(k+1)
B、
1
2k+1
+
1
2(k+1)
C、
1
2k+1
-
1
2(k+1)
D、
1
2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
3
+…
1
2n-1
<f(n)(n≥2,n∈N*)的過(guò)程中,由n=k變到n=k+1時(shí),左邊增加了( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1,且滿(mǎn)足關(guān)系an-an-1=2(n≥2),
(1)寫(xiě)出a2,a3,a4,的值,并猜想{an}的一個(gè)通項(xiàng)公式.
(2)利用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用數(shù)學(xué)歸納法證明“
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
”的過(guò)程中,由“n=k”變成“n=k+1”時(shí),不等式左邊的變化是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案