分析 (Ⅰ)畫(huà)出圖形,建立直角坐標(biāo)系,即得y=f(x)的解析式,代值計(jì)算即可
(Ⅱ)通過(guò)分類(lèi)討論,利用二次函數(shù)的單調(diào)性即可判斷出.
解答 解:(1)如圖所示,建立直角坐標(biāo)系.
∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),
∴B(0,0),A(-2,0),D(-1,a),C(0,a).
∵$\overrightarrow{AP}$=x$\overrightarrow{AD}$,(0≤x≤1).
∴$\overrightarrow{BP}$=$\overrightarrow{BA}$+x$\overrightarrow{AD}$=(-2,0)+x(1,a)=(x-2,xa),
∴$\overrightarrow{PC}$=$\overrightarrow{BC}$-$\overrightarrow{BP}$=(0,a)-(x-2,xa)=(2-x,a-xa)
∴y=f(x)=$\overrightarrow{PB}$•$\overrightarrow{PC}$=(2-x,-xa)•(2-x,a-xa)
=(2-x)2-ax(a-xa)
=(a2+1)x2-(4+a2)x+4.
∴f(1)=a2+1-(4+a2)+4=1
(Ⅱ)由y=f(x)=(a2+1)x2-(4+a2)x+4.
可知:對(duì)稱軸x0=$\frac{4+{a}^{2}}{2({a}^{2}+1)}$.
當(dāng)0<a≤$\sqrt{2}$時(shí),1<x0,∴函數(shù)f(x)在[0,1]單調(diào)遞減,因此當(dāng)x=0時(shí),函數(shù)f(x)取得最大值4.
當(dāng)a>$\sqrt{2}$時(shí),0<x0<1,函數(shù)f(x)在[0,x0)單調(diào)遞減,在(x0,1]上單調(diào)遞增.
又f(0)=4,f(1)=1,
∴f(x)max=f(0)=4.
綜上所述函數(shù)f(x)的最大值為4
點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算、分類(lèi)討論、二次函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)與基本技能方法,考查了推理能力和計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | -12 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 關(guān)于直線$x=\frac{π}{4}$對(duì)稱 | B. | 關(guān)于直線$x=-\frac{π}{4}$對(duì)稱 | ||
C. | 關(guān)于直線$x=\frac{π}{2}$對(duì)稱 | D. | 關(guān)于直線$x=-\frac{π}{2}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x1x2<0 | B. | 0<x1x2<1 | C. | x1x2=1 | D. | x1x2>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-sinx | B. | x-sinx | C. | sinx+xcosx | D. | cosx-xsinx |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com