18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=1+sinα\end{array}$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)判斷曲線C1與曲線C2的位置關(guān)系.

分析 (1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=1+sinα\end{array}$,(α為參數(shù)),消去參數(shù)可得普通方程.曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,展開可得:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=$\sqrt{2}$,利用互化公式公式化為直角坐標(biāo)方程.
(2)利用點(diǎn)到直線的距離公式可得圓心C1到直線C2的距離d,與r比較即可得出位置關(guān)系.

解答 解:(1)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=1+sinα\end{array}$,(α為參數(shù)),
消去參數(shù)可得普通方程:(x-2)2+(y-1)2=1,可得圓心C1(2,1),半徑r=1.
曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,
展開可得:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=$\sqrt{2}$,化為:x+y-2=0.
(2)圓心C1到直線C2的距離d=$\frac{|2+1-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$<1=r,
∴曲線C1與曲線C2的位置關(guān)系是相交.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2離心率為$\frac{{\sqrt{3}}}{2}$,圓O:x2+y2=1的切線l與橢圓C相交于A,B兩點(diǎn),滿足|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)弦長|AB|=$\sqrt{3}$時(shí),求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)S兩顆均勻的骰子,則點(diǎn)數(shù)之和為4的概率等于(  )
A.$\frac{1}{18}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線$\sqrt{3}$x+y-3=0的傾斜角為( 。
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=1,S6=3,則S9=(  )
A.4B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.閱讀下列語句:

該語句執(zhí)行后輸出的結(jié)果A是( 。
A.5B.6C.15D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2}$sin2ωxcosφ+cos2ωxsinφ+$\frac{1}{2}$cos($\frac{π}{2}$+φ)(0<φ<π),其圖象上相鄰兩條對(duì)稱軸之間的距離為π,且過點(diǎn)($\frac{π}{6},\frac{1}{2}$).
(I)求ω和φ的值;
(II)求函數(shù)y=f(2x),x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知非零向量$\overrightarrow a$,$\overrightarrow b$及平面α,若向量$\overrightarrow a$是平面α的法向量,則$\overrightarrow a$•$\overrightarrow b$=0是向量$\overrightarrow b$所在直線平行于平面α或在平面α內(nèi)的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U={1,2,3,4,5},集合M={1,4},則∁UM=( 。
A.{1,4}B.{2,5}C.{2,3,5}D.{3,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案