13.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=1,S6=3,則S9=(  )
A.4B.5C.7D.9

分析 由等比數(shù)列性質(zhì)得S3,S6-S3,S9-S6成等比數(shù)列,由此能求出S9

解答 解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn,S3=1,S6=3,
由等比數(shù)列性質(zhì)得S3,S6-S3,S9-S6成等比數(shù)列,
∴(3-1)2=1×(S9-3),
解得S9=7.
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的前9項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點(diǎn),AM=AB,DM=DC,SM⊥AD.
(Ⅰ)證明:BM⊥平面SMC;
(Ⅱ)若SB與平面ABCD所成角為$\frac{π}{4}$,N為棱SC上的動(dòng)點(diǎn),當(dāng)二面角S-BM-N為$\frac{π}{4}$時(shí),求$\frac{SN}{NC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x-1,函數(shù)g(x)=[f(x)]2-3f(x)+2,函數(shù)g(x)的零點(diǎn)為α,β,且α<β,設(shè)A={x|α≤x≤β+log2$\frac{4}{3}$}
(1)記函數(shù)f(x)在A上的值域?yàn)镃,若函數(shù)G(x)=x2+2x+t,x∈[0,1]的值域?yàn)锽,且C∪B=B,求實(shí)數(shù)t的取值范圍;
(2)若?x∈A,[f(log2x)]2+2af(log2x)+a>-5恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-4y的最大值與最小值的和為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,點(diǎn)P為BC邊上一點(diǎn),且$\overrightarrow{BP}$=2$\overrightarrow{PC}$,$\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,則λ=( 。
A.$-\frac{2}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosα\\ y=1+sinα\end{array}$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)判斷曲線C1與曲線C2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,△ABC中,BC=6,以BC為直徑的半圓分別交AB,AC于點(diǎn)E,F(xiàn),若AC=2AE.
(Ⅰ)證明△AEF?~△ACB;   
(Ⅱ)求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在調(diào)查學(xué)生數(shù)學(xué)成績與物理成績之間的關(guān)系時(shí),得到如表數(shù)據(jù)(人數(shù)):試判斷數(shù)學(xué)成績與物理成績之間是否線性相關(guān),判斷出錯(cuò)的概率有多大?
物理
成績好
物理
成績不好
合計(jì)
數(shù)學(xué)
成績好
622385
數(shù)學(xué)
成績不好
282250
合計(jì)9045135
參考公式:
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在數(shù)列{an}中,a1=2,$\frac{{{a_{n+1}}}}{a_n}$=3,則a3=18.

查看答案和解析>>

同步練習(xí)冊答案