16.對數(shù)函數(shù)y=logax(a>0,且a≠1)的圖象過定點(diǎn)(  )
A.(0,0)B.(0,1)C.(1,1)D.(1,0)

分析 直接利用對數(shù)的性質(zhì)寫出結(jié)果即可.

解答 解:由loga1=0,
可得對數(shù)函數(shù)y=logax(a>0,且a≠1)的圖象過定點(diǎn)(1,0).
故選:D.

點(diǎn)評 本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線方程x2-8y2=32,則(  )
A.實軸長為$4\sqrt{2}$,虛軸長為2B.實軸長為$8\sqrt{2}$,虛軸長為4
C.實軸長為2,虛軸長為$4\sqrt{2}$D.實軸長為4,虛軸長為$8\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.4cos70°+tan20°=( 。
A.$\sqrt{2}$B.2$\sqrt{2}$C.1+$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若b在[0,10]上隨機(jī)地取值,則使方程x2-bx+b+3=0有實根的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC中,AB=3,AC=4,BC=5,M為AC的中點(diǎn),則$\overrightarrow{AB}•\overrightarrow{BM}$=( 。
A.-16B.-9C.9D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+bx-alnx.
(1)當(dāng)函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程為y+5x-5=0,求函數(shù)f(x)的解析式;
(2)在(1)的條件下,若x0是函數(shù)f(x)的零點(diǎn),且x0∈(n,n+1),n∈N*,求n的值;
(3)當(dāng)a=1時,函數(shù)f(x)有兩個零點(diǎn)x1,x2(x1<x2),且x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={y|y=$\sqrt{{x^2}-3x+2}}$},B={x|x≤t2+2t-1,對于t∈R恒成立},則( 。
A.A⊆BB.B⊆AC.A∪B=RD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知在多面體ABCDEF中,ABCD為正方形,EF∥平面ABCD,M為FC的中點(diǎn),AB=2,EF到平面ABCD的距離為2,F(xiàn)C=2.
(1)證明:AF∥平面MBD;
(2)若EF=1,求VF-MBE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,橢圓長軸端點(diǎn)為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點(diǎn),且$\overrightarrow{AF}•\overrightarrow{FB}$=1,|OF|=1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為M,直線l交橢圓于P,Q兩點(diǎn),是否存在直線l,使點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案