A. | $[-\frac{23}{27},1]$ | B. | $[\frac{23}{27},1]$ | C. | [1,3] | D. | (-∞,1] |
分析 根據(jù)條件即可得出f(x3-x2+a)≥f(1),而f(x)為偶函數(shù),從而得出f(|x3-x2+a|)≥f(1),根據(jù)單調(diào)性即可得出|x3-x2+a|≤1,進(jìn)而得出-x3+x2-1≤a≤-x3+x2+1,而x∈[0,1].可設(shè)g(x)=-x3+x2+1,h(x)=-x3+x2-1,然后求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)符號判斷g(x),h(x)的單調(diào)性,進(jìn)而得出g(x)的最小值,h(x)的最大值,從而得出a的取值范圍.
解答 解:f(x)是R上的偶函數(shù);
∴f(-x3+x2-a)=f(x3-x2+a);
∴由f(x3-x2+a)+f(-x3+x2-a)≥2f(1)得,2f(x3-x2+a)≥2f(1);
∴f(x3-x2+a)≥f(1);
∴f(|x3-x2+a|)≥f(1);
又f(x)在[0,+∞)上遞減;
∴|x3-x2+a|≤1;
∴-1≤x3-x2+a≤1;
∴-x3+x2-1≤a≤-x3+x2+1對x∈[0,1]恒成立;
設(shè)g(x)=-x3+x2+1,h(x)=-x3+x2-1,則g′(x)=h′(x)=-3x(x-$\frac{2}{3}$);
∴x∈[0,$\frac{2}{3}$]時,g(x),h(x)都單調(diào)遞增,x∈($\frac{2}{3}$,1]時,g(x),h(x)都單調(diào)遞減;
∴h(x)的最大值為f($\frac{2}{3}$)=-$\frac{23}{27}$,g(x)的最小值為f(0)=1;
∴-$\frac{23}{27}$≤a≤1;
即實(shí)數(shù)a的取值范圍為[-$\frac{23}{27}$,1];
故選:A.
點(diǎn)評 考查偶函數(shù)的定義,減函數(shù)的定義,絕對值不等式的解法,以及函數(shù)導(dǎo)數(shù)符號和函數(shù)單調(diào)性的關(guān)系,根據(jù)函數(shù)單調(diào)性求函數(shù)最值的方法,以及恒成立問題的處理方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0} | B. | {x|x≤1} | C. | {x|x≥2} | D. | {x|x≤1或x≥2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 與m有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\stackrel{→}{AC}$ | B. | $\stackrel{→}{BD}$ | C. | $\stackrel{→}{CA}$ | D. | $\stackrel{→}{DB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ①③ | D. | ②③ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com