(2012•包頭一模)
a
b
為平面向量,已知
a
=(4,3),2
a
+
b
=(3,18),則
a
,
b
夾角的余弦值等于
16
65
16
65
分析:根據(jù)題意,易得
b
=(-5,12),從而得到向量
a
、
b
的數(shù)量積和
a
、
b
的模,再由兩個(gè)向量夾角的坐標(biāo)公式,可算出向量
a
b
的夾角的余弦值.
解答:解:∵
a
=(4,3),2
a
+
b
=(3,18),
b
=(-5,12)
因此,
a
b
=4×(-5)+3×12=16,|
a
|=
42+32
=5,|
b
|=
(-5)2+122
=13
a
b
的夾角θ滿足cosθ=
a
b
|a|
|b|
=
16
5×13
=
16
65

故答案為:
16
65
點(diǎn)評(píng):本題已知
a
和2
a
+
b
的坐標(biāo),求向量
a
b
的夾角的余弦值.著重考查了數(shù)量積表示兩個(gè)向量的夾角、平面向量模與夾角的公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點(diǎn),求證:平面PAC⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)下列命題錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與拋物線y2=8x有 一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若|PF|=5,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)函數(shù)f(x)=sin(ωx+?)(其中|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 
x=acosφ
y=bsinφ
(a>b>0,?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線C1上的點(diǎn)M(1,
3
2
)對(duì)應(yīng)的參數(shù)φ=
π
3
,曲線C2過點(diǎn)D(1,
π
3
).
(Ⅰ)求曲線C1,C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)A(ρ 1,θ),B(ρ 2,θ+
π
2
) 在曲線C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案