【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

【答案】B

【解析】試題分析:根據(jù)給出的個隨機數(shù)及約定規(guī)則可知,投籃三次恰有兩次命中的次數(shù)為次,所以命中的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查家庭的月收入與月儲蓄的情況,某居民區(qū)的物業(yè)工作人員隨機抽取該小區(qū)20個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,計算得:,,,.

(1)求家庭的月儲蓄對月收入的線性回歸方程;

(2)指出(1)中所求出方程的系數(shù),并判斷變量之間是正相關(guān)還是負相關(guān);

(3)若該居民區(qū)某家庭月收入為9千元,預(yù)測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內(nèi)組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于160分的學(xué)生進入第二階段比賽.現(xiàn)有200名學(xué)生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(Ⅰ)估算這200名學(xué)生測試成績的中位數(shù),并求進入第二階段比賽的學(xué)生人數(shù);
(Ⅱ)將進入第二階段的學(xué)生分成若干隊進行比賽.現(xiàn)甲、乙兩隊在比賽中均已獲得120分,進入最后搶答階段.搶答規(guī)則:搶到的隊每次需猜3條謎語,猜對1條得20分,猜錯1條扣20分.根據(jù)經(jīng)驗,甲隊猜對每條謎語的概率均為 ,乙隊猜對前兩條的概率均為 ,猜對第3條的概率為 .若這兩隊搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形所在平面,為線段的中點, 為線段上一點,且

(1)求證: 平面;

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的單調(diào)遞增區(qū)間;

2)對于為任意實數(shù),關(guān)于的方程恰好有兩個不等實根,求實數(shù)的值;

3)在(2)的條件下,若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

(1)求回歸直線方程,其中,.

(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進行檢測,現(xiàn)從該生產(chǎn)線上隨機抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標準差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。

(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評判(表示對應(yīng)事件的概率)

評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;

(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生暑假閱讀名著的情況,一名教師對某班級的所有學(xué)生進行了調(diào)查,調(diào)查結(jié)果如下表.

男生

女生

)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為的概率?

)若從閱讀名著不少于本的學(xué)生中任選人,設(shè)選到的男學(xué)生人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

)試判斷男學(xué)生閱讀名著本數(shù)的方差與女學(xué)生閱讀名著本數(shù)的方程的大小.

查看答案和解析>>

同步練習(xí)冊答案