7.已知3a+a3=123,[a]表示不超過(guò)a的最大整數(shù),則[a]等于4.

分析 由題意43=64,53=125,根據(jù)3a+a3=123,[a]表示不超過(guò)a的最大整數(shù),即可得出結(jié)論.

解答 解:由題意43=64,53=125,
∵3a+a3=123,[a]表示不超過(guò)a的最大整數(shù),
∴[a]=4.
故答案為:4.

點(diǎn)評(píng) 本題考查函數(shù)值的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.三棱錐P-ABC中,△ABC為等邊三角形,PA=PB=PC=1,PA⊥PB,三棱錐P-ABC的外接球的表面積為( 。
A.12πB.C.$\frac{π}{6}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.從某校隨機(jī)選取5名高三學(xué)生,其身高與體重的數(shù)據(jù)如下表所示:
身高x/cm165168170172175
體重y/kg4951556169
根據(jù)上表可得回歸直線$\stackrel{∧}{y}$=2x-a.則預(yù)測(cè)身高為180cm的學(xué)生的體重為( 。
A.73kgB.75kgC.77kgD.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知在△ABC中,三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c.函數(shù)f(x)=sin(2x+B)+$\sqrt{3}$cos(2x+B),且y=f(x-$\frac{π}{3}$)為奇函數(shù).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若a=1,b=f(0),求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1),且當(dāng)x∈[-1,0]時(shí),f(x)=-x2+1.如果函數(shù)g(x)=f(x)-a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知拋物線y2=2px(p>0),若定點(diǎn)(2p,1)與直線kx+y+2k+2=0距離的最大值是5,則p的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知圓O:x2+y2=4,圓M:(x-8)2+(y-6)2=4,在圓M上任取一點(diǎn)P,向圓O作切線PA,PB,切點(diǎn)為A,B,則$\overrightarrow{OA}•\overrightarrow{OB}$的最大值為( 。
A.$-\frac{5}{2}$B.$-\frac{9}{2}$C.$\frac{3}{2}$D.$-\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)水平放置的圖形的斜二測(cè)畫法直觀圖如圖所示,其中C=$\frac{π}{2}$,AC=BC=2,那么原平面圖形的面積為(  )
A.4$\sqrt{2}$B.$\frac{\sqrt{2}}{4}$C.8$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知三次函數(shù)f(x)=x3+ax2+bx+c在(-∞,-1),(2,+∞)上增加的,在(-1,2)上是減少的遞減.
(1)求a,b的值;
(2)當(dāng)且僅當(dāng)x≥4時(shí),f(x)≥x2-4x+5,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案