A. | g(β)<g(μ)<g(α)<g(λ) | B. | g(μ)<g(β)<g(λ)<g(α) | C. | g(α)<g(λ)<g(μ)<g(β) | D. | g(β)<g(μ)<g(λ)<g(α) |
分析 化簡f(x),求函數g(x)的導數,判斷函數g(x)的單調性,結合一元二次函數的性質判斷α>λ>μ>β,結合函數單調性的性質進行判斷即可.
解答 解:由于a>0,設f(x)=ah(x),即h(x)=(x-x1)(x-x2)(x-x3),
由h(x)=(x-x1)(x-x2)(x-x3)可得h(x)=x3-(x1+x2+x3)x2+(x1x2+x1x3+x2x3)x-x1x2x3,
∴h′(x)=3x2-2(x1+x2+x3)x+(x1x2+x1x3+x2x3)=0,
∵△=4(x1+x2+x3)2-12(x1x2+x1x3+x2x3)=2[(x1-x2)2+(x2-x3)2+(x3-x1)2],
∵x1>x2>x3.∴△>0,∴方程h′(x)=0有兩個不相等的實數根;
g′(x)=4+3cos(2x+1)>0,
則g(x)為增函數,
下面證明α>$\frac{{x}_{1}+{x}_{2}}{2}$>β,
由h′(x)=3x2-2(x1+x2+x3)x+(x1x2+x1x3+x2x3)=0可得
h′($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{3({x}_{1}+{x}_{2})^{2}}{4}$-(x1+x2+x3)(x1+x2)+x1x2+x1x3+x2x3-x1x2=-$\frac{({x}_{1}-{x}_{2})^{2}}{4}$<0
即h′($\frac{{x}_{1}+{x}_{2}}{2}$)=3($\frac{{x}_{1}+{x}_{2}}{2}$-α)($\frac{{x}_{1}+{x}_{2}}{2}$-β)<0,
由α>β可得β<$\frac{{x}_{1}+{x}_{2}}{2}$<α,
同理可知β<$\frac{{x}_{2}+{x}_{3}}{2}$<α,
∵$\frac{{x}_{1}+{x}_{2}}{2}$>$\frac{{x}_{2}+{x}_{3}}{2}$,
∴β<$\frac{{x}_{1}+{x}_{2}}{2}$<$\frac{{x}_{2}+{x}_{3}}{2}$<α,
即α>λ>μ>β,
∵g(x)為增函數,
∴g(β)<g(μ)<g(λ)<g(α),
故選:D
點評 本題主要考查函數值的大小比較,根據條件判斷函數的單調性,以及α>λ>μ>β是解決本題的關鍵.綜合性較強,難度較大.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com