已知球的半徑為5,相互垂直的兩個(gè)平面分別截球面得兩個(gè)圓,若兩圓的公共弦長(zhǎng)為6,則兩圓的圓心距為


  1. A.
    4
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    1
A
分析:求解本題,可以從三個(gè)圓心上找關(guān)系,構(gòu)建矩形利用對(duì)角線相等即可求解出答案.
解答:設(shè)兩圓的圓心分別為O1、O2,球心為O,公共弦為AB,其中點(diǎn)為E,
則OO1EO2為矩形,
于是對(duì)角線O1O2=OE,
而OE===4.
故選:A.
點(diǎn)評(píng):本題主要考查球的有關(guān)概念以及兩平面垂直的性質(zhì),是對(duì)基礎(chǔ)知識(shí)的考查.解決本題的關(guān)鍵在于得到OO1EO2為矩形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn和通項(xiàng)an滿足數(shù)學(xué)公式(q是常數(shù)且q>0,q≠1,).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)數(shù)學(xué)公式時(shí),試證明a1+a2+…+an數(shù)學(xué)公式
(3)設(shè)函數(shù)f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),是否存在正整數(shù)m,使數(shù)學(xué)公式對(duì)任意n∈N*都成立?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若α,β為第二象限的角,且sinα>sinβ則


  1. A.
    α>β
  2. B.
    cosα>cosβ
  3. C.
    tanα>tanβ
  4. D.
    cosα<cosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

某人有甲、乙兩只密碼箱,現(xiàn)存放兩份不同的文件,則此人使用同一密碼箱存放這兩份文件的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在空間中,“直線a?平面α”是“直線a∥平面α”成立的________條件.(填“充分不必要”、“充分必要”、“必要不充分”中的一種)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知向量數(shù)學(xué)公式,數(shù)學(xué)公式=(1,數(shù)學(xué)公式),則數(shù)學(xué)公式的最小值是


  1. A.
    1
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)已知函數(shù)f(x)=4x3+3tx2-6t2x+t-1,x∈R,t∈R.
(1)當(dāng)t≠0時(shí),求f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD,G,H分別是DF,BE的中點(diǎn).
(Ⅰ)求證:GH∥平面CDE;
(Ⅱ)當(dāng)四棱錐F-ABCD的體積取得最大值時(shí),求平面ECF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知橢圓方程為數(shù)學(xué)公式,則它的離心率是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案