△ABC的外接圓的圓心為O,兩條邊上的高的交點(diǎn)為H,,則實(shí)數(shù)m=________.

答案:1
解析:

(特殊值法)當(dāng)△ABC為直角三角形時(shí),O為AC中點(diǎn).AB、BC邊上高的交點(diǎn)H與B重合.,∴m=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知三點(diǎn)A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圓為圓,橢圓
x2
4
+
y2
2
=1
的右焦點(diǎn)為F.
(1)求圓M的方程;
(2)若點(diǎn)P為圓M上異于A、B的任意一點(diǎn),過(guò)原點(diǎn)O作PF的垂線(xiàn)交直線(xiàn)x=2
2
于點(diǎn)Q,試判斷直線(xiàn)PQ與圓M的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•佛山一模)已知A(-2,0),B(2,0),C(m,n).
(1)若m=1,n=
3
,求△ABC的外接圓的方程;
(2)若以線(xiàn)段AB為直徑的圓O過(guò)點(diǎn)C(異于點(diǎn)A,B),直線(xiàn)x=2交直線(xiàn)AC于點(diǎn)R,線(xiàn)段BR的中點(diǎn)為D,試判斷直線(xiàn)CD與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知
AB
AC
=-4
,試求直線(xiàn)AB的方程;
(Ⅱ)當(dāng)圓M與直線(xiàn)y=9相切時(shí),求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,s=
l1
l2
+
l2
l1
,試求s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•朝陽(yáng)區(qū)一模)如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C作圓O的切線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)D.若CD=
3
,AB=AC=2,則線(xiàn)段AD的長(zhǎng)是
1
1
;圓O的半徑是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市房山區(qū)良鄉(xiāng)中學(xué)高三數(shù)學(xué)會(huì)考模擬試卷(4)(解析版) 題型:解答題

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知,試求直線(xiàn)AB的方程;
(Ⅱ)當(dāng)圓M與直線(xiàn)y=9相切時(shí),求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,,試求s的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案