14.已知f(α)=$\frac{sin(π-α)cos(2π-α)}{{sin(\frac{π}{2}+α)tan(2π+α)}}$,求f($\frac{31π}{3}$).

分析 利用誘導(dǎo)公式化簡函數(shù)的解析式,代入求解即可.

解答 解:∵$f(α)=\frac{sin(π-α)cos(2π-α)}{{sin(\frac{π}{2}+α)tan(2π+α)}}$,
∴$f(α)=\frac{sinαcosα}{cosαtanα}=cosα$…(6分)
∴$f(\frac{31π}{3})=cos\frac{31π}{3}=\frac{1}{2}$…(12分)

點(diǎn)評 本題考查是三角函數(shù)誘導(dǎo)公式的應(yīng)用,三角函數(shù)求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,PA⊥面ABCD,∠ABC=120°,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,G為線段PC上的點(diǎn).
(Ⅰ)證明:BD⊥面PAC;
(Ⅱ)若G滿足PC⊥面BGD,求$\frac{PG}{GC}$ 的值;
(Ⅲ)若G是PC的中點(diǎn),求DG與APC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知方程$\frac{x^2}{25-m}$+$\frac{y^2}{m+9}$=1表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是( 。
A.-9<m<25B.8<m<25C.16<m<25D.m>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)是自變量不為零的偶函數(shù),且f(x)=log2x(x>0),g(x)=$\left\{\begin{array}{l}{3^x}-2,0≤x≤1\\ \frac{1}{x},x>1\end{array}$,若存在實數(shù)n使得f(m)=g(n),則實數(shù)m的取值范圍是( 。
A.[-2,2]B.$[-2,-\frac{1}{2}]$∪$[\frac{1}{2},2]$C.$[-\frac{1}{2},0)$∪$(0,\frac{1}{2}]$D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=xex-ex+1的單調(diào)遞減區(qū)間是( 。
A.(-∞,e-1)B.(1,e)C.(e,+∞)D.(e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an},an≠0,若a1=3,2an+1-an=0,則a5=( 。
A.$\frac{3}{32}$B.$\frac{3}{16}$C.48D.94

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓的一個短軸端點(diǎn)及兩個焦點(diǎn)構(gòu)成的三角形的面積為$\sqrt{3}$,圓C方程為(x-a)2+(y-b)2=($\frac{a}$)2
(1)求橢圓及圓C的方程;
(2)過原點(diǎn)O作直線l與圓C交于A,B兩點(diǎn),若$\overrightarrow{CA}$•$\overrightarrow{CB}$=-2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點(diǎn).求證:
(1)C1O∥面AB1D1;
(2)面OC1D∥面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,己知正方形ABCD的邊長為l,點(diǎn)E是AB邊上的動點(diǎn).
(1)$\overrightarrow{DE}$•$\overrightarrow{CB}$的值,
(2)求$\overrightarrow{DE}$•$\overrightarrow{DC}$ 的最大值.

查看答案和解析>>

同步練習(xí)冊答案