【題目】(選修4-5:不等式選講)
設(shè)函數(shù)
(1)若a=1,試求的解集;
(2)若a>0,且關(guān)于x的不等式有解,求實(shí)數(shù)a的取值范圍
【答案】(1).(2)
【解析】試題分析:(1)由零點(diǎn)分段法分三段求不等式的解集.
(2)關(guān)于的不等式有解,則函數(shù)的圖象與直線有兩個(gè)交點(diǎn),從而可求實(shí)數(shù)的取值范圍.
試題解析:(1)
由得; 由,此不等式無解,由得,
故不等式的解集為.
(2)當(dāng)時(shí),
若關(guān)于的不等式有解,則函數(shù)的圖象與直線有兩個(gè)交點(diǎn),
∴,解得,∴實(shí)數(shù)的取值范圍是.
點(diǎn)晴:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用對(duì)值的幾何意義求解.法一是運(yùn)用分類討論的思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中,,且前7項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量主要受污染物排放量及大氣擴(kuò)散等因素的影響,某市環(huán)保監(jiān)測(cè)站2014年10月連續(xù)10天(從左到右對(duì)應(yīng)1號(hào)至10號(hào))采集該市某地平均風(fēng)速及空氣中氧化物的日均濃度數(shù)據(jù),制成散點(diǎn)圖如圖所示.
(Ⅰ)同學(xué)甲從這10天中隨機(jī)抽取連續(xù)5天的一組數(shù)據(jù),計(jì)算回歸直線方程.試求連續(xù)5天的一組數(shù)據(jù)中恰好同時(shí)包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現(xiàn)有30名學(xué)生,每人任取5天數(shù)據(jù),對(duì)應(yīng)計(jì)算出30個(gè)不同的回歸直線方程.已知30組數(shù)據(jù)中有包含氧化物日均濃度最值的有14組.現(xiàn)采用這30個(gè)回歸方程對(duì)某一天平均風(fēng)速下的氧化物日均濃度進(jìn)行預(yù)測(cè),若預(yù)測(cè)值與實(shí)測(cè)值差的絕對(duì)值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據(jù)以上信息完成下列2×2聯(lián)表,并分析是否有95%以上的把握說擬合效果與選取數(shù)據(jù)是否包含氧化物日均濃度最值有關(guān).
預(yù)測(cè)效果好 | 擬合效果不好 | 合計(jì) | |
數(shù)據(jù)有包含最值 | 5 | ||
數(shù)據(jù)無包含最值 | 4 | ||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若的零點(diǎn)為2,求;
(2)若在上單調(diào)遞減,求的最小值;
(3)若對(duì)于任意的都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形 中, , , , , , 是 上的點(diǎn), , 為 的中點(diǎn),將 沿 折起到 的位置,使得 ,如圖2.
(1)求證:平面平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家為了了解一款產(chǎn)品的質(zhì)量,隨機(jī)抽取200名男性使用者和100名女性使用者,對(duì)該款產(chǎn)品進(jìn)行評(píng)分,繪制出如下頻率分布直方圖.
(1)利用組中值(數(shù)據(jù)分組后,一個(gè)小組的組中值是指這個(gè)小組的兩個(gè)端點(diǎn)的數(shù)的平均數(shù)),估計(jì)100名女性使用者評(píng)分的平均值;
(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從這200名男性中抽取20名,在這20名中,從評(píng)分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評(píng)分在區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù),使得有三個(gè)相異零點(diǎn)?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com