已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0),右頂點是A,若雙曲線C右支上存在兩點B、C,使△ABC為正三角形,則雙曲線C的離心率e的取值范圍是
 
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:要使該雙曲線右支上存在兩點B,C使得△ABC為正三角形,則需過右頂點A,且斜率為
3
3
的直線與雙曲線有兩個不同的交點,也只需其斜率大于漸近線y=
b
a
x的斜率,再由離心率公式從而得解.
解答: 解:由題意,雙曲線的漸近線方程為y=±
b
a
x,
要使該雙曲線右支上存在兩點B,C使得△ABC為正三角形,
則需過右頂點A,且斜率為
3
3
的直線與雙曲線有兩個不同的交點,
也只需其斜率大于漸近線y=
b
a
x的斜率.
3
3
b
a
,∴b<
3
3
a,
即b2
1
3
a2,
即有c2<a2+
1
3
a2,
即為c<
2
3
3
a,
即有1<e<
2
3
3

故答案為:(1,
2
3
3
).
點評:本題以雙曲線為載體,考查雙曲線的漸近線和離心率的范圍,考查直線與雙曲線的交點,解題的關(guān)鍵是將問題轉(zhuǎn)化為過右頂點A,且斜率為
3
3
的直線與雙曲線有兩個不同的交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的斜率k滿足|k|<1,求直線l的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,過點F向C的一條漸近線引垂線,垂足為A,交另一條漸近線于點B.若2
AF
=
FB
,則C的離心率是(  )
A、
2
3
3
B、
14
3
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為DJ,DE,且DJ⊆DE.若對于任意x⊆DJ,都有g(shù)(x)=f(x),則稱函數(shù)g(x)為f(x)在DE上的一個延拓函數(shù).設(shè)f(x)=ex(x+1)(x<0),g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是奇函數(shù),給出以下命題:
①當(dāng)x>0時,g(x)=e-x(x-1);
②函數(shù)g(x)有5個零點;
③g(x)>0的解集為(-1,0)∪(1,+∞);
④函數(shù)g(x)的極大值為1,極小值為-1;
⑤?x1,x2∈R,都有|g(x1)-g(x2)|<2
其中正確的命題是
 
(填上所有正確的命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x<1”是“l(fā)og2(x+1)<1”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出求解二元一次方程組
3x-2y=8
4x+y=7
的一個算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C1:y2=4x,雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0),若C1的焦點恰為C2的右焦點,則2a+b的最大值為( 。
A、
5
B、5
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列:2×
1
2
,3×
1
4
,4×
1
8
,5×
1
16
…(n+1)×
1
2n
,求數(shù)列的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某大學(xué)中隨機(jī)選取7名女大學(xué)生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如表:
 編號 1 23 45 67
 身高x 163 164 165 166 167 168 169
 體重y 5252 5355 5456 56
(1)求根據(jù)女大學(xué)生的身高x預(yù)報體重y的回歸方程;
(2)利用(1)中的回歸方程,分析這7名女大學(xué)生的身高和體重的變化,并預(yù)報一名身高為172cm的女大學(xué)生的體重;
(3)試分析說明回歸方程預(yù)報的效果.
附:1.回歸直線的斜率和截距的最小二乘法估計公式分別為:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,
a
=
.
y
-
b
.
x

2.反映回歸效果的公式為:R2=1-
n
i-1
(y1
y1
)2
n
i=1
(yi-
.
y
)
,其中R2越接近于1,表示回歸的效果越好.
3.參考數(shù)據(jù):
7
i=1
(y1-
yi
2=2.25.

查看答案和解析>>

同步練習(xí)冊答案