【題目】下列命題正確的是__________.(寫出所有正確命題的序號(hào))

①已知,“”是“”的充要條件;

②已知平面向量,“”是“”的必要不充分條件;

③已知,“”是“”的充分不必要條件;

④命題:“,使”的否定為:“,都有

【答案】

【解析】對(duì)于①, ,由不等式的性質(zhì)可以得到,而由不能得到,比如 ,所以①錯(cuò)誤的; 對(duì)于②,若,不能得出,比如,兩向量同向,所以②錯(cuò)誤; 對(duì)于③, ,表示的是在單位圓外面部分(包括邊界),而表示的是以原點(diǎn)為中心,對(duì)角線長(zhǎng)為的正方形外面(包括邊界),由于正方形在單位圓的內(nèi)部,所以可以得出,而不能得出,所以③是正確的;對(duì)于④,命題P的否定是“ 都有”,所以④是錯(cuò)誤的.正確的只有③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,點(diǎn)在橢圓上, 為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)已知點(diǎn)為橢圓上的三點(diǎn),若四邊形為平行四邊形,證明:四邊形的面積為定值,并求該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值2,則空白判斷框中的條件可能為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若上存在極值點(diǎn),求的取值范圍;

(2)設(shè), ,若存在最大值,記為,則當(dāng)時(shí), 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)生產(chǎn)企業(yè)為了解消費(fèi)者對(duì)某款手機(jī)功能的認(rèn)同情況,通過銷售部隨機(jī)抽取50名購(gòu)買該款手機(jī)的消費(fèi)者,并發(fā)出問卷調(diào)查(滿分50分),該問卷只有30份給予回復(fù),這30份的評(píng)分如下:

(Ⅰ)完成下面的莖葉圖,并求16名男消費(fèi)者評(píng)分的中位數(shù)與14名女消費(fèi)者評(píng)分的平均值;

(Ⅱ)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)者對(duì)該款手機(jī)的“滿意度”與性別有關(guān).

參考公式: ,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,短軸的一個(gè)端點(diǎn)為.過橢圓左頂點(diǎn)的直線與橢圓的另一交點(diǎn)為.

(1)求橢圓的方程;

(2)若與直線交于點(diǎn),求的值;

(3)若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,老師為了提高同學(xué)們的興趣,先讓同學(xué)們從1到3循環(huán)報(bào)數(shù),結(jié)果最后一個(gè)同學(xué)報(bào)2;再讓同學(xué)們從1到5循環(huán)報(bào)數(shù),最后一個(gè)同學(xué)報(bào)3;又讓同學(xué)們從1到7循報(bào)數(shù),最后一個(gè)同學(xué)報(bào)4.請(qǐng)你設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)班至少有多少人,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并作出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈線性相關(guān)關(guān)系,現(xiàn)分別用模型①:與模型②:作為產(chǎn)卵數(shù)和溫度的回歸方程來建立兩個(gè)變量之間的關(guān)系.

溫度

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/個(gè)

6

10

21

24

64

113

322

400

484

576

676

784

900

1024

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中, , ,

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

(1)在答題卡中分別畫出關(guān)于的散點(diǎn)圖、關(guān)于的散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷哪一個(gè)模型更適宜作為回歸方程類型?(給出判斷即可,不必說明理由).

(2)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下建立關(guān)于的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為時(shí)的產(chǎn)卵數(shù).(與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù): , ,

(3)若模型①、②的相關(guān)指數(shù)計(jì)算得分分別為, ,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè),證明:當(dāng)時(shí), ;

(Ⅲ)設(shè)的兩個(gè)零點(diǎn),證明 .

查看答案和解析>>

同步練習(xí)冊(cè)答案