精英家教網 > 高中數學 > 題目詳情

n為正整數,f(n)=1++++,計算得f(2)=,f(4)>2,

f(8)>,f(16)>3,觀察上述結果,可推測一般的結論為 . 

 

【答案】

f(2n)(nN*)

【解析】f(2)=f(21)=,f(4)=f(22)>2=,

f(8)=f(23)>=,f(16)=f(24)>3=,,

f(2n)(nN*).

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設n為正整數,f(n)=1+
1
2
+
1
3
+…+
1
n
計算得f(2)=
3
2
,f(4)≥2,f(8)≥
5
2
,f(16)≥3觀察上述結果可推測一般結論是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•惠州模擬)設n為正整數,規(guī)定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2
,
(1)解不等式f(x)≤x;
(2)設集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:設函數y=f(x)在(a,b)內可導,f'(x)為f(x)的導數,f''(x)為f'(x)的導數即f(x)的二階導數,若函數y=f(x) 在(a,b)內的二階導數恒大于等于0,則稱函數y=f(x)是(a,b)內的下凸函數(有時亦稱為凹函數).已知函數f(x)=xlnx
(1)證明函數f(x)=xlnx是定義域內的下凸函數,并在所給直角坐標系中畫出函數f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據所畫下凸函數f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數時,定義函數N (n)表示n的最大奇因數.如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

設n為正整數,f(n)=1+
1
2
+
1
3
+…+
1
n
,經計算得f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
,觀察上述結果,對任意正整數n,可推測出一般結論是
 

查看答案和解析>>

同步練習冊答案