已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區(qū)間上的最小值為-2,求實數(shù)的取值范圍;
(3)若對任意,且恒成立,求實數(shù)的取值范圍.
(1)(2)(3)
【解析】
試題分析:解:(Ⅰ)當時,,
因為,.所以切線方程是
(Ⅱ)函數(shù) 的定義域是,
當時,
令,即,
所以或。
當,即時,在[1,e]上單調(diào)遞增,
所以在[1,e]上的最小值是;
當時,在[1,e]上的最小值是,不合題意;
當時,在(1,e)上單調(diào)遞減,
所以在[1,e]上的最小值是,不合題意;
綜上,。
(Ⅲ)設(shè),則,只要在上單調(diào)遞增即可.而,
當時,,此時在上單調(diào)遞增;
當時,只需在上恒成立,因為,只要,
則需要,且對于函數(shù),過定點(0,1),對稱軸,只需,即;
綜上。
考點:導數(shù)的應用
點評:導數(shù)常應用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。
科目:高中數(shù)學 來源:2013-2014學年福建省福州市高三畢業(yè)班質(zhì)檢理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對應邊分別為,且若向量與向量共線,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省東莞市第三次月考高一數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期假期檢測文科數(shù)學試卷 題型:解答題
已知函數(shù).().
(1)當時,求函數(shù)的極值;
(2)若對,有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年吉林省高三上學期第二次教學質(zhì)量檢測文科數(shù)學卷 題型:解答題
已知函數(shù)
(1)當時,求的極小值;
(2)設(shè),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com