5.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)

分析 根據(jù)題意,由橢圓的標(biāo)準(zhǔn)方程分析可得其焦點(diǎn)在y軸上,且a2=25,b2=16,由橢圓的幾何性質(zhì)可得c的值,結(jié)合焦點(diǎn)的位置即可得答案.

解答 解:根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1,
則其焦點(diǎn)在y軸上,且a2=25,b2=16,
必有c=$\sqrt{25-16}$=3,
則其焦點(diǎn)坐標(biāo)為(0,±3);
故選:B.

點(diǎn)評 本題考查橢圓的幾何性質(zhì),關(guān)鍵是掌握橢圓的標(biāo)準(zhǔn)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列結(jié)論:
①命題“?x∈R,x2+x≥0”的否定是“?x∈R,x2+x<0”;
②命題“若x2+2x+q=0有不等實根,則q<1”的逆否命題是真命題;
③命題“平行四邊形的對角線互相平分”的否命題是真命題;
④命題$p:?x∈R,{x^2}-x+\frac{1}{2}<0$;命題q:設(shè)A,B,C為△ABC的三個內(nèi)角,若A<B,則sinA<sinB.命題p∨q為假命題.
其中,正確結(jié)論的個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了解甲、乙兩校高二年級學(xué)生某次聯(lián)考物理成績情況,從這兩學(xué)校中分別隨機(jī)抽取30名高二年級的物理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(1)若甲校高二年級每位學(xué)生被抽取的概率為0.15,求甲校高二年級學(xué)生總?cè)藬?shù);
(2)根據(jù)莖葉圖,對甲、乙兩校高二年級學(xué)生的物理成績進(jìn)行比較,寫出兩個統(tǒng)計結(jié)論(不要求計算);
(3)從樣本中甲、乙兩校高二年級學(xué)生物理成績不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若向量$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{0}$,則|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.空間中,設(shè)m,n表示直線,α,β,γ表示平面,則下列命題正確的是( 。
A.若α⊥γ,β⊥γ,則α∥βB.若m⊥α,m⊥β,則α∥βC.若m⊥β,α⊥β,則m∥αD.若n⊥m,n⊥α,則m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(-|x|)的圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最好一位選手的成績.
(Ⅰ)求乙班總分超過甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個學(xué)校共有2000名學(xué)生,含初一、初二、初三、高一、高二、高三六個年級,要采用分層抽樣方法從全部學(xué)生中抽取一個容量為50的樣本,已知高一有600名學(xué)生,那么從高一年級抽取的學(xué)生人數(shù)是15人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,兩個頂點(diǎn)分別為A(-a,0),B(a,0),點(diǎn)M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,過點(diǎn)M斜率為k(k≠0)的直線交橢圓E于C,D兩點(diǎn),且點(diǎn)C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線BC,BD的斜率分別為k1,k2,求證:k1k2為定值.

查看答案和解析>>

同步練習(xí)冊答案