14.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,點(diǎn)E在棱PB上,且PE=2EB.
(1)求證:PD∥平面EAC;
(2)求證:平面APD⊥平面EAC.

分析 (1)連結(jié)AC,BD,交于點(diǎn)O,連結(jié)OE,推導(dǎo)出△AOB∽△DOC,從而$\frac{OB}{DO}=\frac{AB}{DC}$=$\frac{1}{2}$,進(jìn)而$\frac{BE}{PE}=\frac{BO}{DO}$,推導(dǎo)出OE∥PD,由此能證明PD∥平面EAC.
(2)取CD中點(diǎn)F,連結(jié)AF,推導(dǎo)出PA⊥AC,AC⊥AD,從而AC⊥平面PAD,由此能證明平面APD⊥平面EAC.

解答 證明:(1連結(jié)AC,BD,交于點(diǎn)O,連結(jié)OE,
∵底面ABCD為梯形,AB∥DC,AB=BC=PA=1,CD=2,
∴△AOB∽△DOC,∴$\frac{OB}{DO}=\frac{AB}{DC}$=$\frac{1}{2}$,
∵點(diǎn)E在棱PB上,且PE=2EB,
∴$\frac{BE}{PE}=\frac{BO}{DO}$,∴OE∥PD,
∵PD?平面AEC,OE?平面AEC,
∴PD∥平面EAC.
(2)取CD中點(diǎn)F,連結(jié)AF,
∵在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,
∴PA⊥AC,四邊形ABCF是正方形,AF=DF=CF,AF⊥CD,
∴AC⊥AD,
∵PA∩AD=A,∴AC⊥平面PAD,
∵AC?平面PAC,
∴平面APD⊥平面EAC.

點(diǎn)評 本題考查線面平行、面面垂直的證明,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從含有三件正品a1,a2,a3和一件次品b1的四件產(chǎn)品中,每次任取一件,取出后再放回,連續(xù)取兩次,則取出的兩件產(chǎn)品中恰有一件次品的概率為( 。
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{7}{16}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從1,2,3,…,n中這n個數(shù)中取m (m,n∈N*,3≤m≤n)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為f(n,m),則f(30,5)等于98.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1的一條漸近線與直線l:3x+y+1=0垂直,則此雙曲線的焦距為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1的焦點(diǎn)G與y軸垂直的直線與拋物線C交于點(diǎn)H,且|HF|=2|GH|.
(1)求拋物線C的方程;
(2)過點(diǎn)F任意作互相垂直的兩條直線l1、l2,分別交C于點(diǎn)A,B和點(diǎn)M,N.設(shè)線段AB,MN的中點(diǎn)分別為P,Q,求證:直線PQ恒過一個定點(diǎn);
(3)在(2)的條件下,求△FPQ外接圓面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等比數(shù)列{an}中,如果a5和a9是一元二次方程x2+7x+9=0的兩個根,則a4•a7•a10的值為( 。
A.-27B.27C.±27D.±81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實(shí)數(shù)a>0,則下列等式成立的是( 。
A.(-2)-2=4B.2a-3=$\frac{1}{2{a}^{3}}$C.(-2)0=-1D.(a${\;}^{-\frac{1}{4}}$)4=$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q.若∠PAQ=60°且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,則雙曲線C的漸近線方程為( 。
A.y=±$\frac{{\sqrt{3}}}{3}$xB.y=±$\frac{{\sqrt{3}}}{2}$xC.y=±$\sqrt{3}$xD.y=±$\frac{{2\sqrt{3}}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2${\;}^{sin(2x-\frac{π}{4})}$.
(1)這個函數(shù)是否為周期函數(shù)?為什么?
(2)求它的單調(diào)增區(qū)間和最大值.

查看答案和解析>>

同步練習(xí)冊答案