已知橢圓過(guò)點(diǎn),且離心率

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足,試判斷直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由。

 

【答案】

(1)  ;(2)

【解析】

試題分析:(1)本小題通過(guò)待定系數(shù)法列出兩個(gè)關(guān)于的方程.通過(guò)解方程組求出橢圓方程.包含著二次方的運(yùn)算需掌握.(2)本小題是直線與橢圓的位置關(guān)系的問(wèn)題.這類題目的常用思路就是聯(lián)立直線方程和橢圓方程通過(guò)消元得到一個(gè)二次方程,確定判別式的情況.正確書(shū)寫(xiě)利用韋達(dá)定理. ,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足,D點(diǎn)不是左右定點(diǎn)要關(guān)注.根據(jù)向量的數(shù)量積為零.可得到關(guān)于兩個(gè)根的等式.再利用韋達(dá)定理即可得關(guān)于m,k的等式.從而就可得相應(yīng)的結(jié)論.

試題解析:(Ⅰ)由題意橢圓的離心率。

     

∴橢圓方程為 2分

又點(diǎn)在橢圓上

∴橢圓的方程為 4分

(II)設(shè),由

,.

所以,又橢圓的右頂點(diǎn)

,

,

,解得

,且滿足.

當(dāng)時(shí),,直線過(guò)定點(diǎn)與已知矛盾;

當(dāng)時(shí),,直線過(guò)定點(diǎn)

綜上可知,直線過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為 

考點(diǎn):1.直線與圓的位置關(guān)系.2.韋達(dá)定理3.向量積的問(wèn)題.4.過(guò)定點(diǎn)的問(wèn)題.5.直線與橢圓的綜合問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1,(a>b>0)與雙曲4x2-數(shù)學(xué)公式y2=1有相同的焦點(diǎn),且橢C的離心e=數(shù)學(xué)公式,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案