【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點(diǎn)在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)根據(jù)條件證明,再由面面垂直的判定即可求解;(2)建立空間直角坐標(biāo)系,求得兩個平面的法向量后即可建立二面角余弦值的函數(shù)關(guān)系式,求得函數(shù)的值域即可求解.
試題解析:(1)在梯形中, ∵, , ,∴,
∴,∴,∴,
∵平面平面,平面平面, 平面,
∴平面;(2)由(1)可建立分別以直線, , 為軸, 軸, 軸,如圖所示空間直角坐標(biāo)系,令,則, , , ,
∴, ,設(shè)為平面的一個法向量,
由得,取,則,
∵是平面的一個法向量,
∴,
∵,∴當(dāng)時,有最小值,
當(dāng)時,有最大值,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及法律知識,達(dá)到“法在心中”的目的,某市法制辦組織了普法知識競賽.統(tǒng)計(jì)局調(diào)查隊(duì)隨機(jī)抽取了甲、乙兩單位中各5名職工的成績,成績?nèi)缦卤恚?/span>
甲單位 | 87 | 88 | 91 | 91 | 93 |
乙單位 | 85 | 89 | 91 | 92 | 93 |
(1)根據(jù)表中的數(shù)據(jù),分別求出甲、乙兩單位職工成績的平均數(shù)和方差,并判斷哪個單位對法律知識的掌握更穩(wěn)定;
(2)用簡單隨機(jī)抽樣法從乙單位5名職工中抽取2名,他們的成績組成一個樣本,求抽取的2名職工的分?jǐn)?shù)差至少是4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中點(diǎn)為D,B1C∩BC1=E. 求證:
(1)DE∥平面AA1C1C;
(2)AC⊥平面BCC1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
在四棱錐P-ABCD中,BC∥AD,PA⊥PD,AD=2BC,AB=PB, E為PA的中點(diǎn).
(1)求證:BE∥平面PCD;
(2)求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面是、邊長為的菱形,又底,且,點(diǎn)分別是棱的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求點(diǎn)到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的圖象在處的切線方程;
(2)若,試討論方程的實(shí)數(shù)解的個數(shù);
(3)當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)動的速度為130m/min,山路AC長為1260m,經(jīng)測量,,.
(Ⅰ)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅱ)為使兩位游客在處互相等待的時間不超過分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線與直線交于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)若直線與點(diǎn)的軌跡有兩個不同的交點(diǎn)和,且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:對于任意且時,,.
(1)若,求證:為等比數(shù)列;
(2)若.
① 求數(shù)列的通項(xiàng)公式;
② 是否存在,使得為數(shù)列中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com