17.函數(shù)f(x)=x3+sinx+2016(x∈R),若f(a)=2015,則f(-a)=2017.

分析 可由f(a)=2015求得a3+sina=-1,而f(-a)=-(a3+sina)+2016,這樣便可得出f(-a)的值.

解答 解:f(a)=a3+sina+2016=2015;
∴a3+sina=-1;
∴f(-a)=(-a)3+sin(-a)+2016=-(a3+sina)+2016=1+2016=2017.
故答案為:2017.

點評 考查函數(shù)奇偶性的概念及判斷,注意不要將本題的f(x)當(dāng)成奇函數(shù),以及三角函數(shù)的誘導(dǎo)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC中,AB=4,AC=3,∠CAB=90°,則$\overrightarrow{BA}•\overrightarrow{BC}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$,則z=$\frac{y}{x}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在冬奧會志愿者活動中,甲、乙等5人報名參加了A,B,C三個項目的志愿者工作,因工作需要,每個項目僅需1名志愿者,且甲不能參加A,B項目,乙不能參加B,C項目,那么共有21種不同的志愿者分配方案.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2-x-2≤0},B={x|x2-1>0},則A∩B=( 。
A.[-2,1)B.(-1,1)C.(1,2]D.(-2,-1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.東莞某家具生產(chǎn)廠家根據(jù)市場調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準備每周(按40個工時計算)生產(chǎn)書桌、書柜、電腦椅共120張,且書桌至少生產(chǎn)20張.已知生產(chǎn)這些家具每張所需工時和每張產(chǎn)值如表:
家具名稱書桌書柜電腦椅
工  時$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{4}$
產(chǎn)值(千元)432
問每周應(yīng)生產(chǎn)書桌、書柜、電腦椅各多少張,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)在區(qū)間($\frac{π}{6}$,$\frac{5π}{12}$]上單調(diào),則2sin(φ-$\frac{π}{3}$)的取值范圍是( 。
A.(-1,1]B.(-$\sqrt{3}$,1]C.(-2,1]D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,a1=2,2Sn=(n+1)2an-n2an+1,數(shù)列{bn}滿足b1=1,bnbn+1=$λ•{2}^{{a}_{n}}$.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)是否存在正實數(shù)λ,便得{bn}為等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$G:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的長軸長為$2\sqrt{2}$,離心率$e=\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)過橢圓G的上頂點A的直線l與橢圓G的另一個交點為B,與x軸交于點C,線段AB的中點為D,線段AB的垂直平分線分別交x軸、y軸于P、Q兩點.問:是否存在直線l使△PDC與△POQ的面積相等(O為坐標原點)?若存在,求出所有滿足條件的直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案