【題目】已知,圖中直棱柱的底面是菱形,其中.又點分別在棱上運動,且滿足:,.

1)求證:四點共面,并證明∥平面.

2)是否存在點使得二面角的余弦值為?如果存在,求出的長;如果不存在,請說明理由.

【答案】1)見解析(2)不存在點使之成立.見解析

【解析】

(1) 在線段上分別取點,使得,進而得到即可.

(2)為原點,分別以,及過且與平行的直線為軸建立空間直角坐標系,再求解平面的法向量與平面的法向量,再設,,再根據(jù)二面角的計算方法分析是否存在使得二面角為的余弦值為即可.

解:(1)證法1:在線段上分別取點,使得,易知四邊形是平行四邊形,所以,聯(lián)結,

,且

所以四邊形為矩形,故,同理,

,故四邊形是平行四邊形,所以,所以

四點共面

,平面,平面,

所以平面.

證法2:因為直棱柱的底面是菱形,∴,底面,設交點為,以為原點,分別以,及過且與平行的直線為軸建立空間直角坐標系.則有,,,,設,,則,,,,,,所以,故四點共面.,平面,平面,所以平面.

2)平面中向量,,設平面的一個法向量為,則,可得其一個法向量為.

平面中,,,設平面的一個法向量為

,則,所以取其一個法向量.

,則,

即有,,解得,故不存在點使之成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若存在,對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下,通過日常監(jiān)控得知,,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為

1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得產(chǎn)品至少有一件合格的概率不低于99.5%,求的最小值

2)假設不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.

①已知生產(chǎn)線的不合格品返工后每件產(chǎn)品可分別挽回損失5元和3元,若從兩條生產(chǎn)線上各隨機抽檢1000件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線的挽回損失較多?

②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件可分別獲利10元、8元、6元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取100件進行分級檢測,結果統(tǒng)計如圖所示,用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估計該廠產(chǎn)量2000件時利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.

(Ⅰ)求實數(shù)的值;

(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,,函數(shù)

1)求函數(shù)的單調(diào)遞減區(qū)間;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等邊三角形的邊長為,邊的中點,沿折成直二面角,則三棱錐的外接球的表面積為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知線段是過拋物線的焦點F的一條弦,過點AA在第一象限內(nèi))作直線垂直于拋物線的準線,垂足為C,直線與拋物線相切于點A,交x軸于點T,給出下列命題:

(1);

(2);

(3).

其中正確的命題個數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

)(i)請根據(jù)圖示,將2×2列聯(lián)表補充完整;


優(yōu)分

非優(yōu)分

總計

男生




女生




總計



50

ii)據(jù)此列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認為該學科成績與性別有關?

)將頻率視作概率,從高三年級該學科成績中任意抽取3名學生的成績,求至少2名學生的成績?yōu)閮?yōu)分的概率.

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案