在數(shù)列{an}中,已知a1=40,an+1-an=na+b,其中a,b為常數(shù)且n∈N*,a∈N*,b為負(fù)整數(shù).

(1)用a,b表示an;

(2)若a7>0,a8<0,求通項an

答案:
解析:

(1)an-an-1=(n-1)a+b,an-1-an-2=(n-2)a+b,…,a2-a1=a+b,各式相加,得an-a1=a[1+2+3+…+(n-1)]+(n-1)b,所以a+(n-1)b+40.


提示:

可用疊加法求和.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=
1
4
,
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:數(shù)列{bn}是等差數(shù)列;
(Ⅲ)設(shè)cn=
3
bnbn+1
,Sn是數(shù)列{cn}的前n項和,求使Sn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想數(shù)列{an}的通項公式an的表達(dá)式;
(2)用適當(dāng)?shù)姆椒ㄗC明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個位數(shù)(n∈N*),若數(shù)列{an}的前k項和為2011,則正整數(shù)k之值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮南二模)在數(shù)列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)記bn=(an-
1
2
2,n∈N+,求證:數(shù)列{bn}是等差數(shù)列;
(2)求{an}的通項公式;
(3)對?k∈N+,是否總?m∈N+使得an=k?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)計算a2,a3;
(Ⅱ)求證:{
an-
1
2
3n
}是等差數(shù)列;
(Ⅲ)求數(shù)列{an}的通項公式an及其前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案