【題目】已知數(shù)列{an}滿足a22,(n1)an1nan10(nN*),求數(shù)列{an}的通項(xiàng).

【答案】

【解析】試題分析本題考査的知識(shí)點(diǎn)是數(shù)列的相關(guān)性質(zhì)及數(shù)學(xué)歸納法. ,代入計(jì)算,以依次求出數(shù)列的前幾項(xiàng)分析規(guī)律后,可歸納出數(shù)列的通項(xiàng)公式,利用數(shù)學(xué)歸納法證明,①易證當(dāng)時(shí),原等式成立;②假設(shè)當(dāng)時(shí),等式成立,去推證當(dāng)時(shí),原等式也成立即可(注意利用好歸納假設(shè))..

試題解析當(dāng)n1時(shí),a11,

a22,可得a33,猜想ann.

證明如下:

當(dāng)n1,2時(shí),a11a22,猜想成立;

假設(shè)當(dāng)nk(k≥2,kN*)時(shí),猜想成立,即akk,

(k1)ak1kak10,

(k1)ak1k210

k≥2,k1≠0

ak1k1,即nk1時(shí),猜想成立,

nN*時(shí),ann.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為萬(wàn)元,其中固定成本為2萬(wàn)元,并且每生產(chǎn)100臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入滿足。假定該產(chǎn)品銷售平衡,那么根據(jù)上述統(tǒng)計(jì)規(guī)律。

(1)要使工廠有盈利,產(chǎn)品應(yīng)控制在什么范圍?

(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí)贏利最大?并求此時(shí)每臺(tái)產(chǎn)品的售價(jià)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,點(diǎn)E、F分別在AD,CD上,AE=CF,EF交BD于點(diǎn)H,將△DEF沿EF折到△D′EF的位置.
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱錐D′﹣ABCFE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=sinx﹣ cosx的圖象可由函數(shù)y=2sinx的圖象至少向右平移個(gè)單位長(zhǎng)度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=+lg(3x)的定義域?yàn)镸.

(Ⅰ)求M;

(Ⅱ)當(dāng)x∈M時(shí),求g(x)=4x-2x+1+2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】試比較nn1(n+1)n(nN*)的大小,分別取n=1,2,3,4,5加以試驗(yàn),根據(jù)試驗(yàn)結(jié)果猜測(cè)一個(gè)一般性結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣x+1.
(1)討論f(x)的單調(diào)性;
(2)證明當(dāng)x∈(1,+∞)時(shí),1< <x;
(3)設(shè)c>1,證明當(dāng)x∈(0,1)時(shí),1+(c﹣1)x>cx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0對(duì)任意的xR都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三個(gè)頂點(diǎn)為A(﹣3,0),B(2,1),C(﹣2,3),求:

(1)BC所在直線的方程;

(2)BC邊上中線AD所在直線的方程;

(3)BC邊上的垂直平分線DE的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案