直線
被曲線
截得的弦長為
;
試題分析:聯(lián)立
,所以弦長為
。
點評:本題主要考查弦長的求法,在求直線與圓錐曲線相交的弦長時一般采用韋達定理設(shè)而不求的方法,在求解過程中一般采取步驟為:設(shè)點→聯(lián)立方程→消元→韋達定理→弦長公式。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖所示,橢圓
C:
的離心率
,左焦點為
右焦點為
,短軸兩個端點為
.與
軸不垂直的直線
與橢圓C交于不同的兩點
、
,記直線
、
的斜率分別為
、
,且
.
(1)求橢圓
的方程;
(2)求證直線
與
軸相交于定點,并求出定點坐標(biāo).
(3)當(dāng)弦
的中點
落在
內(nèi)(包括邊界)時,求直線
的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線
相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點P的直線
l與曲線C相切,且與直線
相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知焦點在
軸上的橢圓
過點
,且離心率為
,
為橢圓
的左頂點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知過點
的直線
與橢圓
交于
,
兩點.
① 若直線
垂直于
軸,求
的大小;
② 若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
方程為
,左、右焦點分別是
,若橢圓
上的點
到
的距離和等于
.
(Ⅰ)寫出橢圓
的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點
是橢圓
的動點,求線段
中點
的軌跡方程;
(Ⅲ)直線
過定點
,且與橢圓
交于不同的兩點
,若
為銳角(
為坐標(biāo)原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(
)的一個頂點為
,離心率為
,直線
與橢圓
交于不同的兩點
、
.(1) 求橢圓
的方程;(2) 當(dāng)
的面積為
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)點
是以
為左、右焦點的雙曲線
左支上一點,且滿足
,則此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是橢圓
上的點,
、
是橢圓的兩個焦點,則
的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在橢圓
中,
分別是其左右焦點,若
,則該橢圓離心率的取值范圍是 ( )
查看答案和解析>>