【題目】已知函數(shù)f(x)=x2aln x(aR).

(1)f(x)x=2處取得極值,求a的值;

(2)f(x)的單調區(qū)間;

(3)求證:當x>1時, x2+ln x<x3.

【答案】(1)a=4;(2)見解析.;(3)見解析.

【解析】

(1)由f′(2)=0即可求出a4。

(2)由題可得f(x)的定義域為x>0。求出f′(x) =x,當a≤0f′(x) >0恒成立。故f(x) (0,+∞) 單調遞增;當a>0時,令f′(x)>0解得即為f(x)的單調増區(qū)間,令f′(x)<0解得即為f(x)的單調減區(qū)間

(3)構造函數(shù)g(x)x3x2ln x,利用導數(shù)得出g(x)(1,+∞)上為單調遞增。易得g(x) >0恒成立,進而可得到結論。

(1)解:f′(x)=x,因為x=2是一個極值點,

所以2-=0,所以a=4.

(2)解:因為f′(x)=x,f(x)的定義域為x>0,

所以當a≤0時,f(x)的單調遞增區(qū)間為(0,+∞).

a>0時,f′(x)=x

f′(x)>0,得x>,

所以函數(shù)f(x)的單調遞增區(qū)間為(,+∞);

f′(x)<0,得0<x<

所以函數(shù)f(x)的單調遞減區(qū)間為(0,).

(3)證明:設g(x)=x3x2-ln x

g′(x)=2x2x,

因為當x>1時,g′(x)=>0,

所以g(x)(1,+∞)上是增函數(shù).

所以g(x)>g(1)=>0.

所以當x>1時,x2+ln x<x3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(I)若∠DAC=30°,求角B的大;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A、B兩個投資項目的利潤率分別為隨機變量X1X2,根據(jù)市場分析,X1X2的分布列分別為

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)A,B兩個項目上各投資100萬元,Y1Y2分別表示投資項目AB所獲得的利潤,求方差V(Y1)V(Y2);

(2)x(0≤x≤100)萬元投資A項目,100x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某公司生產(chǎn)一種品牌服裝的年固定成本為10萬元,且每生產(chǎn)1萬件,需要另投入1.9萬元.R(x)(單位:萬元)為銷售收入,根據(jù)市場調查知R(x)= 其中x(單位:萬件)是年產(chǎn)量.

(1)寫出年利潤W(單位:萬元)關于年產(chǎn)量x的函數(shù)解析式.

(2)當年產(chǎn)量為多少時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F(x)=,x(-1,+∞).

(1)F(x)的單調區(qū)間;

(2)求函數(shù)F(x)[1,5]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中:

①線性回歸方程 至少經(jīng)過點(x1,y1),(x2,y2),…,(xn ,yn)中的一個點;

②若變量之間的相關系數(shù)為 ,則變量之間的負相關很強;

③在回歸分析中,相關指數(shù) 為0.80的模型比相關指數(shù)為0.98的模型擬合的效果要好;

④在回歸直線中,變量時,變量的值一定是-7。

其中假命題的個數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、為曲線上兩點,的橫坐標之和為

(1)求直線的斜率;

(2)為曲線上一點,處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列語句中是命題的有________,其中是真命題的有_____(填序號).

①“垂直于同一條直線的兩個平面必平行嗎?”②“一個數(shù)不是正數(shù)就是負數(shù)”;③“在一個三角形中,大角所對的邊大于小角所對的邊”;④“x+y為有理數(shù),x,y都是有理數(shù)”;⑤作一個三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x+b,求a﹣2b的值;
(2)討論函數(shù)f(x)的單調性;
(3)設函數(shù)g(x)=x2﹣3x+3,如果對于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案