cos17°sin43°+sin163°sin47°(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用誘導公式、兩角和的正弦公式把要求的式子化為sin(43°+17°),計算求得結果.
解答: 解:cos17°sin43°+sin163°sin47°=cos17°sin43°+sin17°cos43°=sin(43°+17°)=sin60°=
3
2
,
故選:C.
點評:本題主要考查誘導公式、兩角和的正弦公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若關于x的不等式x2+|x+3a|<2至少有一個正數(shù)解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

k>
3
2
是直線y=k(x+2)與曲線
y2
9
-
x|x|
4
=1有兩個公共點的( 。l件.
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=sin(2x+φ)(0<φ<π)的圖象上所有點向右平移
π
6
個單位后得到的圖象關于原點對稱,則φ等于( 。
A、0
B、
π
6
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S的值為( 。
A、0
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動曲線Γ1的初始位置所對應的方程為:
x2
a2
-
y2
b2
=1(x<0),一個焦點為F1(-c,0),曲線Γ2
x2
a2
-
y2
b2
=1(x>0)的一個焦點為F2(c,0),其中a>0,b>0,c=
a2+b2
.現(xiàn)將Γ1沿x軸向右平行移動.給出以下三個命題:
①Γ2的兩條漸近線與Γ1的交點個數(shù)可能有3個;
②當Γ2的兩條漸近線與Γ1的交點及Γ2的頂點在同一直線上時,曲線Γ1平移了(
2
+1)a個單位長度;
③當F1與F2重合時,若Γ1,Γ2的公共弦長恰為兩頂點距離的4倍,則Γ1的離心率為3.
其中正確的是( 。
A、②③B、①②③C、①③D、②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}是遞減數(shù)列,其前n項積為Tn,若T12=4T8,則a8•a13=( 。
A、±1B、±2C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

程序框圖(如圖)的運算結果為( 。
A、2B、6C、18D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的三個內(nèi)角A,B,C成等差數(shù)列,求證:
c
a+b
+
a
b+c
=1.

查看答案和解析>>

同步練習冊答案