【題目】已知曲線在點處的切線與曲線也相切.
(1)求實數(shù)的值;
(2)設函數(shù),若且,證明: .
【答案】(1);(2)見解析
【解析】試題分析:(1)根據(jù)導數(shù)的幾何意義得到,先求出在處的切線方程是,再根據(jù)題意這個直線也是的切線,聯(lián)立判別式等于零解出參數(shù)即可;(2)研究函數(shù)的單調(diào)性得到當時, 是減函數(shù);當時, 是增函數(shù),再證當時, 恒成立,即,賦值法得到,證得即可。
(1) ∵,當時, ,故在處的切線方程是,聯(lián)立,消去得,∴,∴或1,故.
(2)由(1)知,由,則.又 ,當時, 是減函數(shù);當時, 是增函數(shù),令, ,再令,則 ,∴.又,當時, 恒成立,即恒成立.令,即,有,即,∵,∴.又,必有,又當時, 是增函數(shù), ∴-,即.
科目:高中數(shù)學 來源: 題型:
【題目】某媒體為調(diào)查喜愛娛樂節(jié)目是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:
(1)根據(jù)該等高條形圖,完成下列列聯(lián)表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目與觀眾性別有關?
(2)從性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進一步調(diào)查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若為的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校對高三學生一次模擬考試的數(shù)學成績進行分析,隨機抽取了部分學生的成績,得到如圖所示的成績頻率分布直方圖.
(1)根據(jù)頻率分布直方圖估計這次考試全校學生數(shù)學成績的眾數(shù)、中位數(shù)和平均值;
(2)若成績不低于80分為優(yōu)秀成績,視頻率為概率,從全校學生中有放回的任選3名學生,用變量ξ表示3名學生中獲得優(yōu)秀成績的人數(shù),求變量ξ的分布列及數(shù)學期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設小圓弧所在圓的半徑為米,圓心角為(弧度).
⑴ 求關于的函數(shù)關系式;
⑵ 已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為16元/米,設花壇的面積與裝飾總費用之比為,求關于的函數(shù)關系式,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,函數(shù) x.
(1)若g(mx2+2x+m)的定義域為R,求實數(shù)m的取值范圍;
(2)當x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在非負實數(shù)m、n,使得函數(shù) 的定義域為[m,n],值域為[2m,2n],若存在,求出m、n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在封閉的直三棱柱ABC﹣A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是( )
A.4π
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com