【題目】定義:平面內(nèi)兩個(gè)分別以原點(diǎn)和兩坐標(biāo)軸為對(duì)稱中心和對(duì)稱軸的橢圓E1,E2,它們的長(zhǎng)短半軸長(zhǎng)分別為a1,b1a2b2,若滿足a2=a1kb2=b1kkZ,k≥2),則稱E2E1k級(jí)相似橢圓,己知橢圓E1: =1,E2E12級(jí)相似橢圓,且焦點(diǎn)共軸,E1E2的離心率之比為2

(Ⅰ)求E2的方程;

(Ⅱ)已知PE2上任意一點(diǎn),過點(diǎn)PE1的兩條切線,切點(diǎn)分別為A(x1,y1)B(x2,y2)

①證明:E1A(x1,y1)處的切線方程為=1;

②是否存在一定點(diǎn)到直線AB的距離為定值,若存在,求出該定點(diǎn)和定值;若不存在,說明理由.

【答案】(Ⅰ)(Ⅱ)①見解析;②存在一定點(diǎn)到直線的距離為定值1

【解析】

(Ⅰ)根據(jù)相似橢圓的概念,可得,,然后根據(jù),并結(jié)合離心率,簡(jiǎn)單計(jì)算,可得結(jié)果.

(Ⅱ)①聯(lián)立方程,可得關(guān)于的一元二次方程,然后使用,并根據(jù),可得結(jié)果.

②根據(jù)①的結(jié)論,可得在點(diǎn)的切線方程,根據(jù),可得直線的方程,假設(shè)定點(diǎn),使用點(diǎn)到線的距離公式,根據(jù)式子為定值,可得結(jié)果.

(Ⅰ)由題意知,,

,,

,解得,,

故橢圓,橢圓

(Ⅱ)①聯(lián)立橢圓與直線方程,

點(diǎn)在橢圓上,有

所以,

即直線與橢圓相切.

所以過點(diǎn)的切線方程為

②由①知,過點(diǎn)的切線方程為

設(shè),則,即,

兩條切線都經(jīng)過點(diǎn),則滿足方程組

那么點(diǎn)和點(diǎn)都在直線上,

則直線的方程為,即

假設(shè)存在一定點(diǎn)到直線的距離為定值,

為定值,

,,

故存在一定點(diǎn)到直線的距離為定值1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷?/span>個(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)?/span>個(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).

,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;

若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場(chǎng)希望的數(shù)學(xué)期望不超過元,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系xOy中,曲線C.直線l經(jīng)過點(diǎn)Pm,0),且傾斜角為O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.

)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點(diǎn),且|PA·PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若函數(shù)4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)矩陣M (其中a>0,b>0).

(1)若a=2,b=3,求矩陣M的逆矩陣M-1;

(2)若曲線Cx2y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C′:y2=1,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn),過點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),直線與直線相交于點(diǎn),試證明:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線C)的焦點(diǎn)F在直線上,平行于x軸的兩條直線,分別交拋物線CAB兩點(diǎn),交該拋物線的準(zhǔn)線于DE兩點(diǎn).

1)求拋物線C的方程;

2)若F在線段上,P的中點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)上存在兩個(gè)極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019COVID19),簡(jiǎn)稱“新冠肺炎”.下圖是2020115日至124日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.

為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)115日至124日的數(shù)據(jù)(時(shí)間變量t的值依次12,…,10)建立模型.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說明理由)

2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)以下是125日至129日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:

時(shí)間

125

126

127

128

129

累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)

1975

2744

4515

5974

7111

(。┊(dāng)125日至127日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?

(ⅱ)2020124日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?

附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

參考數(shù)據(jù):其中,.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

同步練習(xí)冊(cè)答案