【題目】已知定義在 R 上的奇函數(shù) f (x) ,設(shè)其導(dǎo)函數(shù)為 f x ,當(dāng) x ,0時(shí),恒有xf x f x 0 ,令 F x xf x,則滿足 F(3) F 2x 1 的實(shí)數(shù) x 的取值范圍是______.
【答案】
【解析】分析:根據(jù)函數(shù)的奇偶性和條件,判斷函數(shù)F(x)的單調(diào)性,利用函數(shù)的奇偶性和單調(diào)性解不等式即可.
詳解:∵F(x)=xf(x),∴=x+f(x),
即當(dāng)x∈(﹣∞,0]時(shí),xf x f x 0,函數(shù)F(x)為減函數(shù),
∵f(x)是奇函數(shù),∴F(x)=xf(x)為偶數(shù),且當(dāng)x>0為增函數(shù).
即不等式F(3)>F(2x﹣1)等價(jià)為F(3)>F(|2x﹣1|),
∴|2x﹣1|<3,∴﹣3<2x﹣1<3,
即﹣2<2x<4,∴﹣1<x<2,
即實(shí)數(shù)x的取值范圍是(﹣1,2),
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)100位居民的人均月用水量(單位:)的分組及各組的頻數(shù)如下:
,4; ,8; ,15;
,22; ,25; ,14;
,6; ,4; ,2.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖,并根據(jù)直方圖估計(jì)這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);
(3)當(dāng)?shù)卣贫巳司掠盟繛?/span>的標(biāo)準(zhǔn),若超出標(biāo)準(zhǔn)加倍收費(fèi),當(dāng)?shù)卣f,以上的居民不超過這個(gè)標(biāo)準(zhǔn),這個(gè)解釋對(duì)嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參照附表,得到的正確的結(jié)論是( 。
A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”
B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有兩條相交成60°角的直線,交點(diǎn)為.甲、乙分別在上,起初甲離點(diǎn),乙離點(diǎn),后來(lái)甲沿的方向,乙沿的方向,同時(shí)以的速度步行.求:
(1)起初兩人的距離是多少?
(2)后兩人的距離是多少?
(3)什么時(shí)候兩人的距離最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩位射擊運(yùn)動(dòng)員在一次射擊測(cè)試中各射靶7次,每次命中的環(huán)數(shù)如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( 。
A. 甲射擊的平均成績(jī)比乙好 B. 甲射擊的成績(jī)的眾數(shù)小于乙射擊的成績(jī)的眾數(shù)
C. 乙射擊的平均成績(jī)比甲好 D. 甲射擊的成績(jī)的極差大于乙射擊的成績(jī)的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在空間直角坐標(biāo)系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, ),若S1 , S2 , S3分別表示三棱錐D﹣ABC在xOy,yOz,zOx坐標(biāo)平面上的正投影圖形的面積,則( )
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一位數(shù)學(xué)老師在黑板上寫了三個(gè)向量,,,其中,都是給定的整數(shù).老師問三位學(xué)生這三個(gè)向量的關(guān)系,甲回答:“與平行,且與垂直”,乙回答:“與平行”,丙回答:“與不垂直也不平行”,最后老師發(fā)現(xiàn)只有一位學(xué)生判斷正確,由此猜測(cè),的值不可能為( )
A. , B. , C. , D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型水果超市每天以元/千克的價(jià)格從水果基地購(gòu)進(jìn)若干水果,然后以元/千克的價(jià)格出售,若有剩余,則將剩下的水果以元/千克的價(jià)格退回水果基地,為了確定進(jìn)貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購(gòu)進(jìn)水果千克,記超市當(dāng)天水果獲得的利潤(rùn)為(單位:元),求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com