已知雙曲線x2-2y2=2的左、右兩個焦點(diǎn)為F1,F(xiàn)2,動點(diǎn)P滿足|PF1|+|PF2|=4.
(I)求動點(diǎn)P的軌跡E的方程;
(Ⅱ)設(shè)D(
3
2
,0),過F2且不垂直于坐標(biāo)軸的動直線l交軌跡E于A、B兩點(diǎn),若DA、DB為鄰邊的平行四邊形為菱形,求直線l的方程.
(Ⅰ)雙曲線的方程可化為
x2
2
-y2=1
,則|F1F2|=2
3
  
∵|PF1|+|PF2|=4>|F1F2|=2
3
 
∴P點(diǎn)的軌跡E是以F1、F2為焦點(diǎn),長軸為4的橢圓         
由a=2,c=
3
,∴b=1
∴所求方程為
x2
4
+y2=1
;
(Ⅱ)設(shè)l的方程為y=k(x-
3
)
,則k≠0
代入橢圓方程可得(1+4k2)x2-8
3
k2x+12k2-4=0,
設(shè)A(x1,y1)、B(x2,y2),則x1+x2=
8
3
k2
1+4k2
,
∴y1+y2=k(x1+x2-2
3
)=
-2
3
k
1+4k2

∵以DA、DB為鄰邊的平行四邊形為菱形,
∴(
DA
+
DB
)⊥
AB

∴(
DA
+
DB
)•
AB
=0
8
3
k2
1+4k2
-
3
-
2
3
k2
1+4k2
=0
k=±
2
2

∴l(xiāng)的方程為y=±
2
2
(x-
3
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-
y2a
=1的一條漸近線與直線x-2y+3=0垂直,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•淄博三模)已知雙曲線x2-
y2
a
=1(a>0)
的一條漸近線與直線x-2y+3=0垂直,則該雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)已知雙曲線x2-
y2
m
=1
與拋物線y2=8x的一個交點(diǎn)為P,F(xiàn)為拋物線的焦點(diǎn),若|PF|=5,則雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:淄博三模 題型:單選題

已知雙曲線x2-
y2
a
=1(a>0)
的一條漸近線與直線x-2y+3=0垂直,則該雙曲線的離心率是( 。
A.
3
B.
5
C.
5
2
D.2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:嘉定區(qū)二模 題型:填空題

已知雙曲線x2-
y2
a
=1
的一條漸進(jìn)線與直線x-2y+3=0垂直,則a=______.

查看答案和解析>>

同步練習(xí)冊答案