觀察下列等式:

則當(dāng)m<n且m,n∈N表示最后結(jié)果.
3n+1
3
+
3n+2
3
+…+
3m-2
3
+
3m-1
3
=
 
(最后結(jié)果用m,n表示最后結(jié)果).
考點:歸納推理
專題:綜合題,推理和證明
分析:通過觀察,第一個式子為n=0,m=1.第二個式子為n=2,m=4.第三個式子為n=5,m=8,然后根據(jù)結(jié)果值和m,n的關(guān)系進(jìn)行歸納得到結(jié)論.
解答: 解:當(dāng)n=0,m=1時,為第一個式子
1
3
+
2
3
=1,此時1=12-0=m2-n2,
當(dāng)n=2,m=4時,為第二個式子
7
3
+
8
3
+
10
3
+
11
3
=12;此時12=42-22=m2-n2,
當(dāng)n=5,m=8時,為第三個式子
16
3
+
17
3
+
19
3
+
20
3
+
22
3
+
23
3
=39,此時39=82-52=m2-n2,
由歸納推理可知觀察下列等式:
3n+1
3
+
3n+2
3
+…+
3m-2
3
+
3m-1
3
=m2-n2
故答案為:m2-n2
點評:通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題是應(yīng)該具備的基本能力.本題難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系中坐標(biāo)原點重合,極軸與x軸正半軸重合,曲線C的極坐標(biāo)方程是ρ=2
5
sinθ,點P的直角坐標(biāo)為(3,
5
),直線l過點P且傾斜角為
π
4
,設(shè)直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線的參數(shù)方程
(Ⅱ)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由花盆擺成以下圖案,根據(jù)擺放規(guī)律,可得第4個圖形中的花盆數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x是菱形},集合B={x|x是平行四邊形},則集合A和集合B的關(guān)系是
 
,請說明理由
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,若兩點A,B的極坐標(biāo)分別為(3,
π
3
),(4,
π
6
),則△AOB(其中O為極點)的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則命題“x2+y2<1”是命題“|x|+|y|<1”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較sin
3
5
π,cos
2
5
π,tan(-
3
5
π)的大小關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
t
,(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P是曲線C上的一個動點,求它到直線l的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,b>1,且a≠b,令P=lg
a+b
2
,Q=
lga+lgb
2
,則(  )
A、P<QB、P=Q
C、P>QD、P與Q的大小不確定

查看答案和解析>>

同步練習(xí)冊答案