7.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與直線y=x交于不同的兩點,則雙曲線C的離心率的取值范圍是( 。
A.(1,$\sqrt{2}$)∪($\sqrt{2}$,+∞)B.($\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

分析 將直線y=x代入雙曲線的方程,由題意可得b2-a2>0,再由a,b,c的關(guān)系和離心率公式即可得到所求范圍.

解答 解:將直線y=x代入雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,可得:
(b2-a2)x2=a2b2
由題意可得b2-a2>0,
即有c2-2a2>0,
即為e2>2,即e>$\sqrt{2}$.
故選:B.

點評 本題考查雙曲線的離心率的范圍,注意運用聯(lián)立直線方程和雙曲線的方程,考查離心率公式的運用,以及運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與直線y=-1所圍成的三角形的面積為4,則雙曲線C的離心率為(  )
A.$\sqrt{15}$B.$\frac{\sqrt{17}}{2}$C.$\sqrt{17}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若α為銳角,3sinα=tanα,則cos(α-$\frac{π}{4}$)=$\frac{4+\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.
(Ⅰ)求證:BC⊥A1B;
(Ⅱ)若P是線段AC上一點,$AD=\sqrt{3}$,AB=BC=2,三棱錐A1-PBC的體積為$\frac{{\sqrt{3}}}{3}$,求$\frac{AP}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C:x2+2my2=1的兩條漸近線互相垂直,則拋物線E:y=mx2的焦點坐標(biāo)是( 。
A.(0,1)B.(0,-1)C.(0,$\frac{1}{2}$)D.(0,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點(2,1)在雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的漸近線上,則C的離心率為( 。
A.$\sqrt{5}$B.2C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為2x-y=0,則它的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知:如圖所示,平面ABCD⊥平面CDE,BC∥AD,∠BCD=90°,CD⊥DE,AD=DC=DE=2BC=2,G,H分別是BE,CE的中點.
(1)證明:AG⊥CE;
(2)求多面體ABG-DCH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若AB=CB=1,${A_1}C=\frac{{\sqrt{6}}}{2}$,求三棱錐A-A1BC的體積.

查看答案和解析>>

同步練習(xí)冊答案