分析 (I)取AB的中點(diǎn)O,連接CO,OA1,A1B,由CA=CB得CO⊥AB,由△AA1B是等邊三角形得OA1⊥AB,故AB⊥平面COA1,于是AB⊥A1C;
(II)根據(jù)等邊三角形性質(zhì)求出OC,OA1,由勾股定理逆定理得出CO⊥OA1,求出S${\;}_{△CO{A}_{1}}$,于是V${\;}_{A-{A}_{1}BC}$=2V${\;}_{A-{A}_{1}OC}$.
解答 (Ⅰ)證明:取AB的中點(diǎn)O,連接CO,OA1,A1B.
∵CA=CB,∴CO⊥AB,
∵AB=AA1,∠BAA1=60°.∴△A1AB為等邊三角形.
∴OA1⊥AB,
又∵OC?平面COA1,OA1?平面COA1,OC∩OA1=O.
∴AB⊥平面COA1.又A1C?平面COA1,
∴AB⊥A1C.
(Ⅱ)解:∵AB=BC=AC=1,∴CO=$\frac{\sqrt{3}}{2}$,
∵AB=AA1=1,∠BAA1=60°,∴A1O=$\frac{\sqrt{3}}{2}$.
∵A1C=$\frac{\sqrt{6}}{2}$,∴CO2+A1O2=A1C2.
∴CO⊥A1O.
∴S${\;}_{△CO{A}_{1}}$=$\frac{1}{2}CO•{A}_{1}O$=$\frac{1}{2}×\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}=\frac{3}{8}$.
∴V${\;}_{A-{A}_{1}BC}$=2V${\;}_{A-{A}_{1}OC}$=2×$\frac{1}{3}{S}_{△CO{A}_{1}}•AO$=2×$\frac{1}{3}×\frac{3}{8}×\frac{1}{2}$=$\frac{1}{8}$.
點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\sqrt{2}$)∪($\sqrt{2}$,+∞) | B. | ($\sqrt{2}$,+∞) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:2 | B. | 1:3 | C. | 1:6 | D. | 1:8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com