【題目】已知四棱錐P﹣ABCD中底面四邊形ABCD是正方形,各側(cè)面都是邊長(zhǎng)為2的正三角形,M是棱PC的中點(diǎn).建立空間直角坐標(biāo)系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大。
【答案】
(1)證明:連結(jié)AC、BD交于點(diǎn)O,連結(jié)OP.
∵四邊形ABCD是正方形,∴AC⊥BD∵PA=PC,∴OP⊥AC,
同理OP⊥BD,
以O(shè)為原點(diǎn), 分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系O﹣xyz,
,
,
平面BMD的法向量為 ,
∵ , ,又PA平面BMD,
∴PA∥平面BMD
(2)解:平面ABCD的法向量為
平面MBD的法向量為 ,
則 ,即 ,
∴ …(9分)
二面角M﹣BD﹣C的平面角為α,
則 ,α=45°
∴二面角M﹣BD﹣C的平面角45°
【解析】(1)連結(jié)AC、BD交于點(diǎn)O,連結(jié)OP,以O(shè)為原點(diǎn), 分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系O﹣xyz,利用向量法能證明PA∥平面BMD.(2)求出平面ABCD的法向量和平面MBD的法向量,利用向量法能求出二面角M﹣BD﹣C的平面角.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù) ,看下面四個(gè)結(jié)論( )
①f(x)是奇函數(shù);②當(dāng)x>2007時(shí), 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正確結(jié)論的個(gè)數(shù)為:
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)M、N分別在邊AB、BC上,沿直線MD、DN、NM,分別將△AMD、△CDN、△BNM折起,點(diǎn)A,B,C重合于一點(diǎn)P.
(1)證明:平面PMD⊥平面PND;
(2)若cos∠DNP= ,PD=5,求直線PD與平面DMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對(duì)任意實(shí)數(shù)x,有f(﹣x)=﹣f(x),g(﹣x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí)( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn , 且S1 , S2 , S4成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=(﹣1)n﹣1 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,單位圓O與y軸負(fù)半軸交于點(diǎn)O',過點(diǎn)O'作與x軸平行的直線AB,射線O'P從O'A出發(fā),繞著點(diǎn)O'逆時(shí)針方向旋轉(zhuǎn)至O'B,在旋轉(zhuǎn)的過程中,記∠AO'P=x(0<x<π),O'P所經(jīng)過的在單位圓O內(nèi)區(qū)域(陰影部分)的面積為S.
(1)如果 ,那么S=;
(2)關(guān)于函數(shù)S=f(x)的以下兩個(gè)結(jié)論:
①對(duì)任意 ,都有 ;
②對(duì)任意x1 , x2∈(0,π),且x1≠x2 , 都有 .
其中正確的結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)O是平行四邊形ABCD兩條對(duì)角線的交點(diǎn),給出下列向量組:
① 與 ;
② 與 ;
③ 與 ;
④ 與 .
其中可作為該平面其他向量基底的是( )
A.①②
B.①③
C.①④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測(cè)試成績(jī)分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測(cè)試成績(jī)不少于60分的學(xué)生人數(shù)為( )
A.588
B.480
C.450
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 ﹣ =1表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線 ﹣ =1的離心率e∈(1,2).若命題p、q有且只有一個(gè)為真,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com