精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,BC=a,AC=b,且ab是方程的兩根,2cos(A+B)=1

(1)求∠C的度數;

(2)求AB的長;

(3)求△ABC的面積

【答案】(1) 120°(2) (3)

【解析】試題分析:(1)第(1)問,直接利用誘導公式化簡2cos(A+B)=1即得C的值. (2)第(2)問,先利用韋達定理得到a+b=ab=2,再利用余弦定理得到AB的值. (3)第(3)問,直接代入三角形的面積公式求解.

試題解析:

(1)ABC中,cosC=—cos(A+B)= ,解得C=120°.C=120°.

(2)根據一元二次方程根與系數的關系可得a+b=,ab=2

由余弦定理求得.

(3)ABC的面積等于=.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某港口水的深度y(m)是時間t(0≤t≤24,單位:h)的函數,記作y=f(t).下面是某日水深的數據:

t/h

0

3

6

9

12

15

18

21

24

y/m

10

13

10

7

10

13

10

7

10

經長期觀察,y=f(t)的曲線可以近似地看成函數的圖象.一般情況下,船舶航行時,船底離海底的距離為5m或5m以上時認為是安全的(船舶?繒r,船底只需不碰海底即可).

(1)求y與t滿足的函數關系式;

(2)某船吃水深度(船底離水面的距離)為6.5m,如果該船希望在同—天內安全進出港,請問該船在什么時間段能夠安全進港?它同一天內最多能在港內停留多少小時?(忽略進 出港所需的時間).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數y=f(x)g(x)的奇偶性;
(2)當b=0時,判斷函數y= 在(﹣1,1)上的單調性,并說明理由;
(3)設h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】環(huán)境監(jiān)測中心監(jiān)測我市空氣質量,每天都要記錄空氣質量指數(指數采取10分制,保留一位小數).現隨機抽取20天的指數(見下表),將指數不低于8.5視為當天空氣質量優(yōu)良.

天數

1

2

3

4

5

6

7

8

9

10

空氣質量指數

7.1

8.3

7.3

9.5

8.6

7.7

8.7

8.8

8.7

9.1

天數

11

12

13

14

15

16

17

18

19

20

空氣質量指數

7.4

8.5

9.7

8.4

9.6

7.6

9.4

8.9

8.3

9.3

(Ⅰ)求從這20天隨機抽取3天,至少有2天空氣質量為優(yōu)良的概率;
(Ⅱ)以這20天的數據估計我市總體空氣質量(天數很多).若從我市總體空氣質量指數中隨機抽取3天的指數,用X表示抽到空氣質量為優(yōu)良的天數,求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯表:

喜歡該項運動

不喜歡該項運動

總計

40

20

60

20

30

50

總計

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

參照附表,以下結論正確是( )
A.有99.5%以上的把握認為“愛好該項運動與性別有關”
B.有99.5%以上的把握認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有 種取法.在這 種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有 種取法;另一類是取出的m個球有m﹣1個白球和1個黑球,共有 種取法.顯然 ,即有等式: 成立.試根據上述思想化簡下列式子: =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內部的動點P使|PM|、|PO|、|PN|成等比數列,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的最小值為.

1)求;

2)若,求及此時的最大值.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用同角三角函數間的基本關系化簡函數解析式后,分三種情況:小于﹣1時大于﹣1而小于1時大于1時,根據二次函數求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當時,

②若時,

③若則當時,

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時, 此時

時, 取得最大值為5.

點睛:二次函數在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數圖象的頂點處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(軸含參數),區(qū)間固定;(3)軸固定,區(qū)間動(區(qū)間含參數). 找最值的關鍵是:(1)圖象的開口方向;(2)對稱軸與區(qū)間的位置關系;(3)結合圖象及單調性確定函數最值.

型】填空
束】
21

【題目】已知兩個不共線的向量的夾角為,且為正實數.

1)若垂直,求;

2)若,求的最小值及對應的的值,并指出此時向量的位置關系.

3)若為銳角,對于正實數,關于的方程有兩個不同的正實數解,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案