拋物線x2=2py(p>0)內(nèi)接Rt△OAB(O為坐標(biāo)原點(diǎn))的斜邊AB過(guò)點(diǎn)( 。
分析:設(shè)A(x1,y1),B(x2,y2),直線OA的方程為y=kx,由于OA⊥OB,可得直線OB的方程為:y=-
1
k
x
.分別與拋物線的方程聯(lián)立即可解得A,B的坐標(biāo),再利用點(diǎn)斜式方程可得直線AB的方程,進(jìn)而得出過(guò)定點(diǎn).
解答:解:設(shè)A(x1,y1),B(x2,y2),直線OA的方程為y=kx,
∵OA⊥OB,∴直線OB的方程為:y=-
1
k
x

聯(lián)立
y=kx
x2=2py
,解得A(2pk,2pk2).
同理解得B(
-2p
k
,
2p
k2
)

kAB=
2pk2-
2p
k2
2pk+
2p
k
=k-
1
k

∴斜邊AB所在的直線方程為y-2pk2=(k-
1
k
)(x-2pk)
,
令x=0,則y=2p.
∴Rt△OAB(O為坐標(biāo)原點(diǎn))的斜邊AB過(guò)點(diǎn)(0,2p).
故選C.
點(diǎn)評(píng):本題考查了直線與拋物線相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立解得交點(diǎn)、相互垂直的直線的斜率之間的關(guān)系、直線過(guò)定點(diǎn)問(wèn)題等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l過(guò)拋物線x2=2py(p>0)的焦點(diǎn)F,且與該拋物線交于A、B兩點(diǎn),l的斜率為k,點(diǎn)C(0,t),當(dāng)k=0,t=1+2
3
時(shí),△ABC為等邊三角形.
(Ⅰ)求拋物線的方程.
(Ⅱ)若不論實(shí)數(shù)k取何值,∠ACB始終為鈍角,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙C過(guò)焦點(diǎn)A(0,P)(P>0)圓心C在拋物線x2=2py上運(yùn)動(dòng),若MN為⊙C在x軸上截得的弦,設(shè)|AM|=l1,|AN|=l2,∠MAN=θ
(1)當(dāng)C運(yùn)動(dòng)時(shí),|MN|是否變化?證明你的結(jié)論.
(2)求
l2
l1
+
l1
l2
的最大值,并求出取最大值時(shí)θ值及此時(shí)⊙C方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊二模)已知拋物線x2=2py上點(diǎn)(2,2)處的切線經(jīng)過(guò)橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)
的兩個(gè)頂點(diǎn).
(1)求橢圓E的方程;
(2)過(guò)橢圓E的上頂點(diǎn)A的兩條斜率之積為-4的直線與該橢圓交于B、C兩點(diǎn).請(qǐng)問(wèn):是否存在一點(diǎn)D,使得直線BC恒過(guò)該點(diǎn)?若存在,請(qǐng)求出定點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,過(guò)點(diǎn)A作直線BC的垂線,垂足為H,求點(diǎn)H的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M(m,4)m>0為拋物線x2=2py(p>0)上一點(diǎn),F(xiàn)為其焦點(diǎn),已知|FM|=5,
(1)求m與p的值;
(2)以M點(diǎn)為切點(diǎn)作拋物線的切線,交y軸與點(diǎn)N,求△FMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線x2=2py(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線交拋物線于A、B兩點(diǎn),分別過(guò)A、B兩點(diǎn)作拋物線的兩條切線交于點(diǎn)C,則有( 。
A、
AC
?
BC
=0
B、
AC
?
BC
>0
C、
AC
?
BC
<0
D、
AC
?
BC
≠0

查看答案和解析>>

同步練習(xí)冊(cè)答案