7.三棱錐P-ABC中,面PBC和面ABC都是邊長為12的正三角形,平面PBC和平面ABC所成二面角是60°,求點(diǎn)P到平面ABC的距離.

分析 取BC的中點(diǎn)D,連接AD、PD.則PD垂直BC、AD垂直BC,∠PDA為二面角的平面角,作PE⊥AD于E.因?yàn)锽C⊥平面ADP,所以BC⊥PE,故PE⊥平面ABC,從而PE即為所求距離.

解答 解:取BC的中點(diǎn)D,連接AD、PD.則PD垂直BC、AD垂直BC,
∴∠PDA為二面角的平面角,故∠PDA=60°.
作PE⊥AD于E.因?yàn)锽C⊥平面ADP,所以BC⊥PE,故PE⊥平面ABC,
從而PE即為所求距離.
求得:PD=6$\sqrt{3}$,所以PE=PD$•\frac{\sqrt{3}}{2}$=9.

點(diǎn)評 本題考查點(diǎn)面距離的計(jì)算,考查二面角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知0≤x≤2求函數(shù)$y={({\frac{1}{4}})^{x-1}}-4{({\frac{1}{2}})^x}+2$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值為(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖為從空中某個(gè)角度俯視北京奧運(yùn)會主體育場“鳥巢”頂棚所得的局部示意圖,在平面直角坐標(biāo)系中,下列給定的一系列直線中(其中θ為參數(shù),θ∈R),能形成這種效果的只可能是( 。
A.y=xsinθ+1B.y=x+cosθC.xcosθ+ysinθ+1=0D.y=xcosθ+sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}中前n項(xiàng)和為Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),求Sn及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=-tan($\frac{π}{3}$-2x)的單調(diào)遞增區(qū)間是( 。
A.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$](k∈Z)B.($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$)(k∈Z)
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(1)若m∈(-2,2),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若m∈(0,$\frac{1}{2}$],則當(dāng)x∈[0,m+1]時(shí),函數(shù)y=f(x)的圖象是否總在直線y=x上方,請寫出判斷過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知四棱錐P-ABCD,底面ABCD為正方形,側(cè)面PAD為直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分別為AB、PD的中點(diǎn).
(Ⅰ)求證:EF∥面PBC;
(Ⅱ)求證:AP⊥面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$sin(α+\frac{π}{2})=\frac{3}{5}$,$α∈(-\frac{π}{2},0)$,則tanα的值為$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案