【題目】已知函數(shù),則關于x的方程有以下結論,其中正確的結論為(

A.時,方程恒有實根

B.時,方程內(nèi)有兩個不等實根

C.時,方程內(nèi)最多有9個不等實根

D.若方程內(nèi)的實根的個數(shù)為偶數(shù),則所有實根之和為

【答案】CD

【解析】

作出在一個周期內(nèi)的函數(shù)圖象,解方程可得,討論的范圍得出方程的解得個數(shù)情況,利用函數(shù)圖象的周期性和對稱性計算所有根的和.

解:.

的周期為

作出上的函數(shù)圖象如圖所示:

,

,顯然無解,

,則,故而無解,故A錯誤;

時,,顯然上有3個實數(shù)根,故B錯誤;

時,,故上最多有3個實數(shù)根,

方程內(nèi)最多有9個不等實根,故C正確;

若方程內(nèi)根的個數(shù)為偶數(shù),

則方程在一個周期內(nèi)有兩個根,

圖象的對稱性可知方程內(nèi)的兩根之和為,

同理可得方程內(nèi)的兩根之和為

方程內(nèi)的兩根之和為,

方程內(nèi)所有根之和為.D正確.

故答案為:CD.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設X~N(μ1,),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】月份的二中迎來了國內(nèi)外的眾多賓客,其中很多人喜歡詢問團隊模式,為了了解詢問團隊模式是否與性別有關,在月期間,隨機抽取了人,得到如下所示的列聯(lián)表:

關心團隊

不關心團隊

合計

男性

12

女性

36

合計

80

1)若在這人中,按性別分層抽取一個容量為的樣本,男性應抽人,請將上面的列聯(lián)表補充完整,并據(jù)此資料能否在犯錯誤的概率不超過前提下,認為關心團隊與性別有關系?

2)若以抽取樣本的頻率為概率,從月來賓中隨機抽取人贈送精美紀念品,記這人中關心團隊人數(shù)為,求的分布列和數(shù)學期望.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關系如下:

x

1

3

4

6

7

y

5

65

7

75

8

yx可用回歸方程 其中,為常數(shù))進行模擬.

(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150/箱,試預測該新奇水果100箱的利潤是多少元.|

(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.

i)若從箱數(shù)在內(nèi)的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;

(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)

參考數(shù)據(jù)與公式:設,則

0.54

6.8

1.53

0.45

線性回歸直線中,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,上一動點,,點的軌跡為

1)求曲線的極坐標方程,并化為直角坐標方程;

2)若點,直線的參數(shù)方程為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鮮花批發(fā)店每天早晨以每支2元的價格從鮮切花生產(chǎn)基地購入某種玫瑰,經(jīng)過保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價格整箱出售.由于鮮花的保鮮特點,制定了如下促銷策略:若每天下午3點以前所購進的玫瑰沒有售完,則對未售出的玫瑰以每箱1200元的價格降價處理.根據(jù)經(jīng)驗,降價后能夠把剩余玫瑰全部處理完畢,且當天不再購進該種玫瑰.因庫房限制每天最多加工6箱.

1)若某天此鮮花批發(fā)店購入并加工了6箱該種玫瑰,在下午3點以前售出4箱,且6箱該種玫瑰被6位不同的顧客購買.現(xiàn)從這6位顧客中隨機選取2人贈送優(yōu)惠卡,求恰好一位是以2000元價格購買的顧客且另一位是以1200元價格購買的顧客的概率:

2)此鮮花批發(fā)店統(tǒng)計了100天該種玫瑰在每天下午3點以前的銷售量t(單位:箱),統(tǒng)計結果如下表所示(視頻率為概率):

t/

4

5

6

頻數(shù)

30

x

s

①估計接下來的一個月(30天)該種玫瑰每天下午3點前的銷售量不少于5箱的天數(shù)并說明理由;

②記,,若此批發(fā)店每天購進的該種玫瑰箱數(shù)為5箱時所獲得的平均利潤最大,求實數(shù)b的最小值(不考慮其他成本,的整數(shù)部分,例如:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是南北方向的一條公路,是北偏東方向的一條公路,某風景區(qū)的一段邊界為曲線.為方便游客光,擬過曲線上的某點分別修建與公路,垂直的兩條道路,,且,的造價分別為5萬元百米,40萬元百米,建立如圖所示的直角坐標系,則曲線符合函數(shù)模型,設,修建兩條道路,的總造價為萬元,題中所涉及的長度單位均為百米.

1)求解析式;

2)當為多少時,總造價最低?并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學有位學生申請、、三所大學的自主招生.若每位學生只能申請其中一所大學,且申請其中任何一所大學是等可能的.

1)求恰有人申請大學的概率;

2)求被申請大學的個數(shù)的概率分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分15分)已知點是圓上任意一點,過點軸的垂線,垂足為,點滿足 記點的軌跡為曲線

)求曲線的方程;

)設,點在曲線上,且直線與直線的斜率之積為,求的面積的最大值

查看答案和解析>>

同步練習冊答案