如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED.

(1)證明:CD∥AB;

(2)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓.

 

【答案】

 (1)證明同位角相等。CD∥AB.

(2)證得∠AFG+∠GBA=180°.說明A,B,G,F(xiàn)四點共圓.

【解析】

試題分析: (1)因為EC=ED,所以∠EDC=∠ECD.

因為A,B,C,D四點在同一圓上,所以∠EDC=∠EBA.

故∠ECD=∠EBA.

所以CD∥AB.

(2)由(1)知,AE=BE.因為EF=EG,故∠EFD=∠EGC,從而∠FED=∠GEC.

連結AF,BG,則△EFA≌△EGB,故∠FAE=∠GBE.

又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA.

所以∠AFG+∠GBA=180°.

故A,B,G,F(xiàn)四點共圓.

考點:本題主要考查圓的切割線定理,三角形全等。

點評:中檔題,涉及圓的問題,往往與三角形相關聯(lián),利用三角形相似或三角形全等解決問題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、如圖,A,B,C,D四點都在平面a,b外,它們在a內(nèi)的射影A1,B1,C1,D1是平行四邊形的四個頂點,在b內(nèi)的射影A2,B2,C2,D2在一條直線上,求證:ABCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點,在△ABC中,AB=2,AC=BC=
2
.等邊三角形ADB以AB為軸運動.當CD=
 
時,面ACD⊥面ADB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC=
2

等邊三角形ADB以AB為軸運動.
(Ⅰ)當平面ADB⊥平面ABC時,求CD;
(Ⅱ)當△ADB轉(zhuǎn)動時,是否總有AB⊥CD?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A、B、C、D是某煤礦的四個采煤點,l是公路,圖中所標線段為道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四個采煤點每天的采煤量之比約為5:1:2:3,運煤的費用與運煤的路程、所運煤的重量都成正比.現(xiàn)要從P、Q、R、S中選出一處設立一個運煤中轉(zhuǎn)站,使四個采煤點的煤運到中轉(zhuǎn)站的費用最少,則地點應選在(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•房山區(qū)二模)如圖,A,B,C,D是⊙O上的四個點,過點B的切線與DC的延長線交于點E.若∠BCD=110°,則∠DBE=( 。

查看答案和解析>>

同步練習冊答案