【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

1)若回歸直線方程,其中;試預測當單價為10元時的銷量;

2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是5/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)

【答案】150件;(28.75元.

【解析】

1)根據(jù)數(shù)據(jù)求出樣本中心,將樣本中心,代入回歸直線,即可求得,即可得回歸方程,代入,即可預測銷量.

2)根據(jù)題意,列出利潤的表達式,根據(jù)二次函數(shù)的性質,即可得利潤最大值及單價.

解:(1)由于,

所以,

,從而回歸直線方程為

時,預測銷量為50件;

2)設工廠獲得的利潤為元,依題意得

當且僅當時,取得最大值.

故當單價定為8.75元時,工廠可獲得最大利潤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程選講

在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為

(Ⅰ)寫出曲線和直線的直角坐標方程;

(Ⅱ)設直線過點與曲線交于不同兩點的中點為,的交點為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市教學研究室為了對今后所出試題的難度有更好的把握,提高命題質量,對該市高三理科數(shù)學試卷的得分情況進行了調研.從全市參加考試的理科考生中隨機抽取了100名考生的數(shù)學成績(滿分150分),將數(shù)據(jù)分成9組:,,,,,,,并整理得到如圖所示的頻率分布直方圖.用統(tǒng)計的方法得到樣本標準差,以頻率值作為概率估計值.

(Ⅰ)根據(jù)頻率分布直方圖,求抽取的100名理科考生數(shù)學成績的平均分及眾數(shù);

(Ⅱ)用頻率估計概率,從該市所有高三理科考生的數(shù)學成績中隨機抽取3個,記理科數(shù)學成績位于區(qū)間內的個數(shù)為,求的分布列及數(shù)學期望;

(Ⅲ)從該市高三理科數(shù)學考試成績中任意抽取一份,記其成績?yōu)?/span>,依據(jù)以下不等式評判(表示對應事件的概率):

,②,

,其中

評判規(guī)則:若至少滿足以上兩個不等式,則給予這套試卷好評,否則差評.試問:這套試卷得到好評還是差評?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點.

1)求證:平面PAD;

2)若,求直線EF與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,直線上有兩點EF使,點P在線段的延長線上,且.

1)若,求點P的軌跡方程;

2)若在點P的軌跡上存在兩點M,N,設的夾角為.

①若,求證:直線過定點,并求定點坐標;

②若為銳角,求直線x軸交點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點,滿足條件的點P的軌跡是曲線E,直線y=kx-1與曲線E交于A,B兩點,

(1)求k的取值范圍;

(2)如果,且曲線E上存在點C,使,求m的值和的面積S。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,.

(1)若中點,求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,直線的參數(shù)方程是為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.將曲線上每一點的橫坐標伸長到原來的兩倍(縱坐標不變)得到曲線

1)求曲線的直角坐標方程;

2)已知點,若直線與曲線交于,兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論極值點的個數(shù);

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案