【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

【答案】
(1)解:設(shè)

且| |=2

,

∴x=±2

=(2,4)或 =(﹣2,﹣4)


(2)解:∵( +2 )⊥(2

∴( +2 )(2 )=0

∴2 2+3 ﹣2 2=0

∴2| |2+3| || |cosθ﹣2| |2=0

∴2×5+3× × cosθ﹣2× =0

∴cosθ=﹣1

∴θ=π+2kπ

∵θ∈[0,π]

∴θ=π


【解析】(1)設(shè)出 的坐標(biāo),利用它與 平行以及它的模等于2 ,待定系數(shù)法求出 的坐標(biāo).(2)由 +2 與2 垂直,數(shù)量積等于0,求出夾角θ的余弦值,再利用夾角θ的范圍,求出此角的大。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
(1)若 時(shí), ,求cos4x的值;
(2)將 的圖象向左移 ,再將各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得y=g(x),若關(guān)于g(x)+m=0在區(qū)間 上的有且只有一個(gè)實(shí)數(shù)解,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在路邊安裝路燈,路寬為OD,燈柱OB長為h米,燈桿AB長為1米,且燈桿與燈柱成120°角,路燈采用圓錐形燈罩,其軸截面的頂角為2θ,燈罩軸線AC與燈桿AB垂直.
(1)設(shè)燈罩軸線與路面的交點(diǎn)為C,若OC=5 米,求燈柱OB長;
(2)設(shè)h=10米,若燈罩軸截面的兩條母線所在直線一條恰好經(jīng)過點(diǎn)O,另一條與地面的交點(diǎn)為E(如圖2);
(i)求cosθ的值;
(ii)求該路燈照在路面上的寬度OE的長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三角形ABC的邊長為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,此時(shí)點(diǎn)M到平面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=cosx(asinx﹣cosx)+cos2 ﹣x)滿足f(﹣ )=f(0).
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)銳角△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且 = ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是市兒童樂園里一塊平行四邊形草地ABCD,樂園管理處準(zhǔn)備過線段AB上一點(diǎn)E設(shè)計(jì)一條直線EF(點(diǎn)F在邊BC或CD上,不計(jì)路的寬度),將該草地分為面積之比為2:1的左、右兩部分,分別種植不同的花卉.經(jīng)測量得AB=18m,BC=10m,∠ABC=120°.設(shè)EB=x,EF=y(單位:m).
(1)當(dāng)點(diǎn)F與C重合時(shí),試確定點(diǎn)E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)請確定點(diǎn)E、F的位置,使直路EF長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈(1,5),則函數(shù)y= + 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx﹣1與曲線 有兩個(gè)不同的公共點(diǎn),則k的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案