【題目】直線y=kx﹣1與曲線 有兩個不同的公共點(diǎn),則k的取值范圍是 .
【答案】(0, ]
【解析】解:根據(jù)題意得:y=kx﹣1為恒過定點(diǎn)(0,﹣1)的直線,
曲線表示圓心為(2,0),半徑為1的下半圓,如圖所示,
當(dāng)直線與圓D相切時,有 =1,
解得:k=0或k= (不合題意,舍去);
把C(3,0)代入y=kx﹣1,得k= ,
∴k的取值范圍是(0, ].
所以答案是:(0, ].
【考點(diǎn)精析】本題主要考查了直線與圓的三種位置關(guān)系的相關(guān)知識點(diǎn),需要掌握直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點(diǎn)C.
(1)若C為圓弧AB的中點(diǎn),點(diǎn)D在線段OA上運(yùn)動,求| |的最小值;
(2)若D,E分別為線段OA,OB的中點(diǎn),當(dāng)C在圓弧 上運(yùn)動時,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項(xiàng)和,對任意正整數(shù)n不等式 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD= ,PA=AD=2,AB=BC=1.
(1)求平面PAB與平面PCD所成二面角的余弦值;
(2)點(diǎn)Q是線段BP上的動點(diǎn),當(dāng)直線CQ與DP所成的角最小時,求線段BQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定兩個命題p:函數(shù)y=x2+8ax+1在[﹣1,1]上單調(diào)遞增;q:方程 =1表示雙曲線,如果命題“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(1)已知點(diǎn)M(1,-3),N(1,2),P(5,y),且∠NMP=90°,則log8(7+y)=.
(2)若把本題中“∠NMP=90°”改為“l(fā)og8(7+y)= ”,其他條件不變,則∠NMP=.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com