【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

【答案】1的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

2

【解析】

1)求導(dǎo)得到,計(jì)算單調(diào)性得到答案.

2)令,令,則,討論,,兩種情況,分別根據(jù)函數(shù)的單調(diào)性求最值得到答案.

(1),令,得,故

,解得

,令,

故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;

(2)令,

;令,則,

(。┊(dāng)時(shí),因?yàn)楫?dāng)時(shí),,,所以,

所以上單調(diào)遞增.

又因?yàn)?/span>,所以當(dāng)時(shí),,從而上單調(diào)遞增,

,所以,即成立;

(ⅱ)當(dāng)時(shí),可得上單調(diào)遞增.

因?yàn)?/span>,,

所以存在,使得,且當(dāng)時(shí),,

所以上單調(diào)遞減,又因?yàn)?/span>,所以當(dāng)時(shí),,從而上單調(diào)遞減,而,

所以當(dāng)時(shí),,即不成立;

綜上所述,的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)滿(mǎn)足: .

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線(xiàn)恒過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,若,,且.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)(Ⅰ)中曲線(xiàn)的左、右頂點(diǎn)分別為,過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),(不與,重合).若直線(xiàn)與直線(xiàn)相交于點(diǎn),試判斷點(diǎn),,是否共線(xiàn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201971日,《上海市生活垃圾管理?xiàng)l例》正式實(shí)施,生活垃圾要按照可回收物有害垃圾、濕垃圾干垃圾的分類(lèi)標(biāo)準(zhǔn)進(jìn)行分類(lèi),沒(méi)有垃圾分類(lèi)和未投放到指定垃圾桶內(nèi)等會(huì)被罰款和行政處罰.若某上海居民提著廚房里產(chǎn)生的濕垃圾隨意地投放到樓下的垃圾桶,若樓下分別放有可回收物、有害垃圾、濕垃圾干垃圾四個(gè)垃圾桶,則該居民會(huì)被罰款和行政處罰的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店經(jīng)營(yíng)各種兒童玩具,該網(wǎng)店老板發(fā)現(xiàn)該店經(jīng)銷(xiāo)的一種手腕可以搖動(dòng)的款芭比娃娃玩具在某周內(nèi)所獲純利(元)與該周每天銷(xiāo)售這種芭比娃娃的個(gè)數(shù)(個(gè))之間的關(guān)系如下表:

每天銷(xiāo)售芭比娃娃個(gè)數(shù)(個(gè))

3

4

5

6

7

8

9

該周內(nèi)所獲純利(元)

66

69

74

81

89

90

91

1)由表中數(shù)據(jù)可推測(cè)線(xiàn)性相關(guān),求出回歸直線(xiàn)方程;

2)請(qǐng)你預(yù)測(cè)當(dāng)該店每天銷(xiāo)售這種芭比娃娃20件時(shí),每周獲純利多少?

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,BCADABBC,,MPD的中點(diǎn).

1)求證:CM∥平面PAB;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,垂直圓O所在的平面,是圓O的一條直徑,C為圓周上異于AB的動(dòng)點(diǎn),D為弦的中點(diǎn),.

1)證明:平面平面;

2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)yfx)的導(dǎo)函數(shù),定義的導(dǎo)函數(shù),若方程0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,fx0))為函數(shù)yfx)的拐點(diǎn),經(jīng)研究發(fā)現(xiàn),所有的三次函數(shù)fx)=ax3+bx2+cx+da≠0)都有拐點(diǎn),且都有對(duì)稱(chēng)中心,其拐點(diǎn)就是對(duì)稱(chēng)中心,設(shè)fx)=x33x23x+6,則f+f+……+f)=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案