解答:解:(Ⅰ)∵當(dāng)a=0時,f(x)=ln(1+x),則f′(x)=
,
設(shè)切點P(x
0,ln(1+x
0)),
∴k=f′(x
0)=
,
由點斜式,可得切線方程為y-ln(1+x
0)=
(x-x
0),
又切線過點P(-1,0),則-ln(1+x
0)=
(-1-x
0),
∴x
0=e-1,
∴切線方程為x-ey+1=0;
(Ⅱ)∵f(x)=1n(1+x)-ax(a∈R),則f′(x)=
-a,且當(dāng)x∈[0,+∞)時,
∈(0,1],
①當(dāng)a≤0時,f′(x)=
-a≥0在x∈[0,+∞)上恒成立,
∴f(x)在∈[0,+∞)上單調(diào)遞增;
②當(dāng)a≥1時,f′(x)=
-a≤0在x∈[0,+∞)上恒成立,
∴f(x)在∈[0,+∞)上單調(diào)遞減;
③當(dāng)0<a<1時,令f′(x)=
-a>0,可得0≤x<
,令f′(x)=
-a<0,可得x>
,
∴f(x)在∈[0,
)上單調(diào)遞增,在(
,+∞)上單調(diào)遞減.
綜合①②③,當(dāng)a≤0時,f(x)在∈[0,+∞)上單調(diào)遞增,
當(dāng)0<a<1時,f(x)在∈[0,
)上單調(diào)遞增,在(
,+∞)上單調(diào)遞減,
當(dāng)a≥1時,f(x)在∈[0,+∞)上單調(diào)遞減;
(Ⅲ)當(dāng)0<a<1時,由(Ⅱ)可知,f(x)的最大值為M(a)=-lna+a-1,
∵M(jìn)′(a)=
<0在(0,1)上恒成立,
∴M(a)=-lna+a-1在(0,1)上單調(diào)遞減,
∴M(a)=-lna+a-1>M(1)=0,即-lna+a-1>0,
∴-ln(x-y)+x-y-1>0,即x-y>ln(x-y)+1,
∵0<y<x<1,
∴M(y)>M(x),即-lny+y-1>-lnx+x-1,
∴l(xiāng)nx-lny>x-y>ln(x-y)+1,
故當(dāng)0<y<x<1時,1nx-1ny>1n(x-y)+1.