16.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$,則它的前8項(xiàng)和S8=2.

分析 通過裂項(xiàng)可知an=$\sqrt{n+1}$-$\sqrt{n}$,進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 解:∵an=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$,
∴數(shù)列{an}的前8項(xiàng)和S8=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{9}$-$\sqrt{8}$=$\sqrt{9}$-1=2,
故答案為:2.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,裂項(xiàng)是解決本題的關(guān)鍵,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a=sin33°,b=cos55°,c=tan35°,d=log35,則a,b,c,d按從大到小的順序是d>c>b>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某班級(jí)有50名學(xué)生,現(xiàn)用系統(tǒng)抽樣的方法從這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編號(hào)為1~50號(hào),并按編號(hào)順序平均分成10組(1~5號(hào),6~10號(hào),…,46~50號(hào)),若在第三組抽到的編號(hào)是13,則在第七組抽到的編號(hào)是(  )
A.23B.33C.43D.53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若經(jīng)過點(diǎn)$({4,\sqrt{3}})$的雙曲線的漸近線方程為$y=\frac{1}{2}x$,則雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,an+1=Sn+1(n∈N+
(1)求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Tn,若T3=30,bn≥0(n∈N+)且a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn
(3)證明:$\frac{{T}_{n}}{{a}_{n}}$≤9(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.利用加、減、乘、除、指數(shù)、對(duì)數(shù)、階乘等運(yùn)算,將3個(gè)3組合起來,寫出一個(gè)式子,使得式子的運(yùn)算結(jié)果分別為1,2,3,4等,例如($\frac{3}{3}$)3=1,$\frac{3+3}{3}$=2,3+log33=4,請(qǐng)寫出三個(gè)類似式子,使得運(yùn)算結(jié)果分別為:3,5,6;3+3-3=3,3+3!÷3=5,3×3-3=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在矩形ABCD中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求OE的長(zhǎng)及經(jīng)過O,D,C三點(diǎn)拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;
(3)若點(diǎn)N在(1)中拋物線的對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overline{a}$|=1,|$\overrightarrow$|=2,若$\overrightarrow{a}$-2$\overrightarrow$與k$\overrightarrow{a}$+$\overrightarrow$互相垂直,則實(shí)數(shù)k的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若x>0,則函數(shù)y=-x-$\frac{1}{x}$( 。
A.有最大值-2B.有最小值-2C.有最大值2D.有最小值2

查看答案和解析>>

同步練習(xí)冊(cè)答案