已知2+tan(
π
4
+α)=0,求下列代數(shù)式的值.
(Ⅰ)
4sinα-2cosα
5cosα+3sinα
;    
(Ⅱ)cos2(π+α)+cos(
2
-2α).
考點(diǎn):兩角和與差的正切函數(shù),三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:(Ⅰ)2+tan(
π
4
+α)=0⇒tanα=3,將所求的關(guān)系式中的“弦”化“切”即可求得答案;
(Ⅱ)原式=cos2α-sin2α=cos2α-2sinαcosα,再將右端的分母化為1(sin2α+cos2α),再“弦”化“切”即可.
解答: 解:(I)由2+tan(
π
4
+α)=0⇒2+
1+tanα
1-tanα
=0
解得:tanα=3…(2分)
原式=
4tanα-2
3tanα+5
=
5
7
…(5分);
(II)解:原式=cos2α-sin2α=cos2α-2sinαcosα(7分)
=
cos2α-2sinαcosα
sin2α+cos2α
=
1-2tanα
tan2α+1
=
-5
10
=-
1
2
…(10分)
點(diǎn)評:本題考查兩角和與差的正切函數(shù),著重考查三角函數(shù)的化簡求值,“弦”化“切”是關(guān)鍵,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

寫出下列命題的否定:
(1)所有自然數(shù)的平方是正數(shù);
(2)任何實(shí)數(shù)x都是方程5x-12=0的根;      
(3)對于任意實(shí)數(shù)x,存在實(shí)數(shù)y,使x+y>0;
(4)有些質(zhì)數(shù)是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在區(qū)間(-∞,+∞)上的偶函數(shù),且滿足f(1-x)=f(1+x)(x∈R).
(1)求函數(shù)f(x)的周期;
(2)已知當(dāng)x∈(-1,1]時,f(x)=1-
1-x2
,求使方程f(x)=ax在x∈(-1,1]上有兩個不相等實(shí)根a的取值集合M;
(3)記Ik=(2k-1,2k+1](k∈N,k≥1),Mk表示使方程f(x)=ax在x∈Ik上有兩個不相等實(shí)根的a的取值集合,求集合Mk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,∠A=
π
3
,邊AB、AD的長分別為2、1,若M、N分別是邊BC、CD上的點(diǎn),且滿足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,求
AM
AN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+2x2-4x+5.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)y=f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,側(cè)面PAD與底面ABCD垂直,E為PA的中點(diǎn).
(1)求證:CD⊥PA;
(2)求證:DE∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{(x,y),0≤x≤5,且0≤y≤4}內(nèi)任取一個元素,能使代數(shù)式
y
3
+
x
4
-
19
12
≥0的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+2|-|x-2|,試判斷f(x)的奇偶性.

查看答案和解析>>

同步練習(xí)冊答案